forked from cgnorthcutt/hypopt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
66 lines (54 loc) · 2.36 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Written by Curtis G. Northcutt
# For pypi upload
# 1. python setup.py sdist bdist_wheel --universal
# 2. twine upload dist/*
from setuptools import setup, find_packages
# To use a consistent encoding
from codecs import open
from os import path
here = path.abspath(path.dirname(__file__))
# Get the long description from the README file
with open(path.join(here, 'README.rst'), encoding='utf-8') as f:
long_description = f.read()
# Get version number
exec(open('hypopt/version.py').read())
setup(
name='hypopt',
version=__version__,
license='MIT',
long_description=long_description,
description = 'Grid search hyper-parameter optimization using a validation set (not cross validation)',
url = 'https://github.com/cgnorthcutt/hypopt',
author = 'Curtis G. Northcutt',
author_email = '[email protected]',
# See https://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Topic :: Software Development :: Libraries :: Python Modules',
'License :: OSI Approved :: MIT License',
# We believe this package works will all versions, but we do not guarantee it!
'Programming Language :: Python :: 2.7',
# 'Programming Language :: Python :: 3',
# 'Programming Language :: Python :: 3.2',
# 'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
# 'Programming Language :: Python :: 3.7',
],
# What does your project relate to?
keywords='machine_learning classification regression hyper-parameter-optimization parameter optimization scikit-learn machine learning cross-validation validation',
# You can just specify the packages manually here if your project is
# simple. Or you can use find_packages().
packages=find_packages(exclude=['']),
# List run-time dependencies here. These will be installed by pip when
# your project is installed. For an analysis of "install_requires" vs pip's
# requirements files see:
# https://packaging.python.org/en/latest/requirements.html
install_requires=['numpy>=1.11.3', 'scikit-learn>=0.18'],
)