-
Notifications
You must be signed in to change notification settings - Fork 3
/
get_data.py
367 lines (309 loc) · 16.6 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import os
from os.path import join
import glob
import json
import numpy as np
import cv2
import trimesh
import torch
import smplx
import nvdiffrast.torch as dr
from models.utils import load_K_Rt_from_P
from models.get_rays import get_ray_directions, get_rays
mano_layer = {'right': smplx.create('./', 'mano', use_pca=False, is_rhand=True),
'left': smplx.create('./', 'mano', use_pca=False, is_rhand=False)}
# fix MANO shapedirs of the left hand bug (https://github.com/vchoutas/smplx/issues/48)
if torch.sum(torch.abs(mano_layer['left'].shapedirs[:,0,:] - mano_layer['right'].shapedirs[:,0,:])) < 1:
print('Fix shapedirs bug of MANO')
mano_layer['left'].shapedirs[:,0,:] *= -1
def img_contrast_bright(img, a, b, g):
h, w, c = img.shape
blank = np.zeros([h, w, c], img.dtype)
dst = cv2.addWeighted(img, a, blank, b, g)
return dst
def img_adjust(img):
stone_gama = np.power(img.astype(np.float32), 0.75) # 图像较暗,若采用幂率变换,γ<1,拉伸低灰度级,交互式选择
temp = stone_gama - np.min(stone_gama)
stone_gama = temp / np.max(temp)
img_cmy = 1 - cv2.cvtColor(stone_gama, cv2.COLOR_BGR2RGB)
c, m, y = cv2.split(img_cmy)
# print(m.shape)
m_gama = np.power(m.astype(np.float32), 0.88) # 深红色较多,压缩一下
temp_m = m_gama - np.min(m_gama)
m_gama = (temp_m / (np.max(temp_m)))
out_stone = 1 - cv2.merge((c, m_gama, y))
adjusted = cv2.addWeighted(out_stone * 255, 1.3, out_stone * 255, 0, 5) / 255
return cv2.cvtColor(adjusted, cv2.COLOR_RGB2BGR)
def get_interhand_seqdatabyframe(data_path, res=(334, 512), data_name='0003_fake_gun',
capture_name='Capture9', drop_cam=[], split='train', cam_id=None, test_num=30,
return_ray=False, num_frame=20, adjust=True):
mano_layer['right'] = mano_layer['right'].cpu()
mano_layer['left'] = mano_layer['left'].cpu()
capture_idx = capture_name.replace('Capture', '')
with open(join(data_path, 'annotations/%s' % split, 'InterHand2.6M_%s_camera.json' % split)) as f:
cam_params = json.load(f)
with open(join(data_path, 'annotations/%s' % split, 'InterHand2.6M_%s_MANO_NeuralAnnot.json' % split)) as f:
mano_params = json.load(f)
cam_param = cam_params[capture_idx]
if data_name == 'all':
data_names = sorted(os.listdir(join(data_path, 'images/%s' % split, capture_name)))[:5]
else:
data_names = [data_name]
imgs_t, grayimgs_t, masks_t, w2cs_t, projs_t, mano_out_t = [], [], [], [], [], []
for data_name in data_names:
if cam_id is None or len(cam_id) == 0:
camera_names = [i for i in sorted(os.listdir(join(data_path, 'images/%s' % split, capture_name, data_name)))
if i not in drop_cam and '400' in i][:test_num]
else:
camera_names = [cam_id]
num = len(camera_names)
img_names = sorted(os.listdir(join(data_path, 'images/%s' % split, capture_name, data_name, camera_names[0])))
img_names = img_names[::max(len(img_names) // num_frame, 1)][:num_frame]
print('image views num: %d, frames num: %d' % (num, len(img_names)))
print(data_name, img_names, camera_names)
for img_name in img_names:
mano_param = mano_params[capture_idx][str(int(img_name[5:-4]))]
vertices = []
faces = []
mano_out = []
for hand_type in ['left', 'right']:
if mano_param[hand_type] is not None:
mano_pose = torch.FloatTensor(mano_param[hand_type]['pose']).view(-1, 3)
root_pose = mano_pose[0].view(1, 3)
hand_pose = mano_pose[1:, :].view(1, -1)
shape = torch.FloatTensor(mano_param[hand_type]['shape']).view(1, -1)
trans = torch.FloatTensor(mano_param[hand_type]['trans']).view(1, 3)
output = mano_layer[hand_type](global_orient=root_pose, hand_pose=hand_pose, betas=shape,
transl=trans)
vertices.append(output.vertices)
mano_out.append({'type': hand_type, 'pose': mano_pose, 'shape': shape, 'trans': trans})
if len(faces) == 0:
faces.append(mano_layer[hand_type].faces)
else:
faces.append(mano_layer[hand_type].faces + output.vertices.shape[1])
vertices = torch.cat(vertices, 1).cuda()
faces = np.concatenate(faces, 0)
# mesh = trimesh.Trimesh(vertices=vertices[0].detach().cpu().numpy(), faces=faces)
# mesh.export('test.obj')
faces = torch.from_numpy(faces.astype(np.int32)).int().cuda()
w2cs = []
projs = []
imgs = []
grayimgs = []
for i, cam_name in enumerate(camera_names):
cam_idx = cam_name.replace('cam', '')
t, R = np.array(cam_param['campos'][str(cam_idx)], dtype=np.float32).reshape(3), np.array(
cam_param['camrot'][str(cam_idx)], dtype=np.float32).reshape(3, 3)
scale_mats = np.eye(4)
scale_mats[:3, :3] = R
cam_t = -np.dot(R, t.reshape(3, 1)).reshape(3) / 1000
scale_mats[:3, 3] = cam_t
focal = np.array(cam_param['focal'][cam_idx], dtype=np.float32).reshape(2)
princpt = np.array(cam_param['princpt'][cam_idx], dtype=np.float32).reshape(2)
cameraIn = np.array([[focal[0], 0, princpt[0]],
[0, focal[1], princpt[1]],
[0, 0, 1]])
P = cameraIn @ scale_mats[:3]
proj, w2c = load_K_Rt_from_P(P[:3])
proj[0, 0] = proj[0, 0] / (res[0] / 2.)
proj[0, 2] = proj[0, 2] / (res[0] / 2.) - 1.
proj[1, 1] = proj[1, 1] / (res[1] / 2.)
proj[1, 2] = proj[1, 2] / (res[1] / 2.) - 1.
proj[2, 2] = 0.
proj[2, 3] = -0.1
proj[3, 2] = 1.
proj[3, 3] = 0.
projs.append(proj.astype(np.float32))
w2cs.append(w2c.astype(np.float32))
img = cv2.imread(
join(data_path, 'images/%s' % split, capture_name, data_name, 'cam' + cam_idx, img_name))
img = img_adjust(img) * 255 if adjust else img
# img = img_contrast_bright(img, 1.2, -0.2, 30)
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, res)
grayimg = cv2.resize(grayimg, res)
img = torch.from_numpy((img / 255.)).float()
grayimg = torch.from_numpy((grayimg / 255.)).float()
imgs.append(img)
grayimgs.append(grayimg)
w2cs = torch.from_numpy(np.stack(w2cs)).permute(0, 2, 1).cuda()
projs = torch.from_numpy(np.stack(projs)).permute(0, 2, 1).cuda()
glctx = dr.RasterizeGLContext()
vertsw = torch.cat([vertices, torch.ones_like(vertices[:, :, 0:1])], axis=2).expand(num, -1, -1)
rot_verts = torch.einsum('ijk,ikl->ijl', vertsw, w2cs)
proj_verts = torch.einsum('ijk,ikl->ijl', rot_verts, projs)
rast_out, _ = dr.rasterize(glctx, proj_verts, faces, resolution=(res[1], res[0]))
feat = torch.ones_like(vertsw[:, :, :1])
feat, _ = dr.interpolate(feat, rast_out, faces)
masks = feat[:, :, :, :1].contiguous().squeeze(-1)
# masks = dr.antialias(masks, rast_out, proj_verts, faces).squeeze(-1)
imgs = torch.stack(imgs, dim=0)
grayimgs = torch.stack(grayimgs, dim=0)
imgs[masks == 0] = 0
grayimgs[masks == 0] = 0
imgs_t.append(imgs)
grayimgs_t.append(grayimgs)
masks_t.append(masks)
w2cs_t.append(w2cs)
projs_t.append(projs)
mano_out_t.append(mano_out)
imgs_t = torch.stack(imgs_t, dim=0)
grayimgs_t = torch.stack(grayimgs_t, dim=0)
masks_t = torch.stack(masks_t, dim=0).cpu()
w2cs_t = torch.stack(w2cs_t, dim=0).cpu()
projs_t = torch.stack(projs_t, dim=0).cpu()
hand_types = []
pose_t = []
shape_t = []
trans_t = []
for mano_out in mano_out_t:
if len(mano_out) == 2:
hand_types = ['left', 'right']
pose_t.append(torch.cat([mano_out[0]['pose'], mano_out[1]['pose']], 0).unsqueeze(0))
shape_t.append(torch.cat([mano_out[0]['shape'], mano_out[1]['shape']], 1))
trans_t.append(torch.cat([mano_out[0]['trans'], mano_out[1]['trans']], 1))
else:
hand_types = [mano_out[0]['type']]
pose_t.append(mano_out[0]['pose'].unsqueeze(0))
shape_t.append(mano_out[0]['shape'])
trans_t.append(mano_out[0]['trans'])
pose_t = torch.cat(pose_t, 0)
shape_t = torch.cat(shape_t, 0)
trans_t = torch.cat(trans_t, 0)
if return_ray:
ray_directions = []
c2ws = torch.inverse(w2cs)
for i, cam_name in enumerate(camera_names):
cam_idx = cam_name.replace('cam', '')
cam_ray_direction = get_ray_directions(res[1], res[0], cam_param['focal'][cam_idx][0],
cam_param['focal'][cam_idx][1],
cam_param['princpt'][cam_idx][0],
cam_param['princpt'][cam_idx][1], ).cuda()
tmp_ray_direction, _ = get_rays(cam_ray_direction, c2ws[i])
ray_direction = tmp_ray_direction.reshape(res[1], res[0], 3).cpu()
ray_directions.append(ray_direction)
ray_directions = torch.stack(ray_directions)
return imgs_t, grayimgs_t, masks_t, w2cs_t, projs_t, pose_t, shape_t, trans_t, hand_types, ray_directions
return imgs_t, grayimgs_t, masks_t, w2cs_t, projs_t, pose_t, shape_t, trans_t, hand_types
def get_interhand_test_seqdatabyframe(data_path, res=(334, 512), data_name='0003_fake_gun',
capture_name='Capture9', drop_cam=[], split='train', cam_id=None, test_num=30,
return_ray=False, adjust=True):
mano_layer['right'] = mano_layer['right'].cpu()
mano_layer['left'] = mano_layer['left'].cpu()
capture_idx = capture_name.replace('Capture', '')
with open(join(data_path, 'annotations/%s' % split, 'InterHand2.6M_%s_camera.json' % split)) as f:
cam_params = json.load(f)
with open(join(data_path, 'annotations/%s' % split, 'InterHand2.6M_%s_MANO_NeuralAnnot.json' % split)) as f:
mano_params = json.load(f)
cam_param = cam_params[capture_idx]
if data_name == 'all':
data_names = sorted(os.listdir(join(data_path, 'images/%s' % split, capture_name)))[:20]
else:
data_names = [data_name]
imgs_t, grayimgs_t, masks_t, w2cs_t, projs_t, mano_out_t = [], [], [], [], [], []
for data_name in data_names:
if cam_id is None:
camera_names = [i for i in sorted(os.listdir(join(data_path, 'images/%s' % split, capture_name, data_name)))
if i not in drop_cam and '400' in i][:test_num:10]
else:
camera_names = [cam_id]
num = len(camera_names)
img_names = sorted(os.listdir(join(data_path, 'images/%s' % split, capture_name, data_name, camera_names[0])))[
:]
print('image views num: %d, frames num: %d' % (num, len(img_names)))
# print(data_name, img_names, camera_names)
for img_name in img_names:
mano_param = mano_params[capture_idx][str(int(img_name[5:-4]))]
mano_out = []
for hand_type in ['left', 'right']:
if mano_param[hand_type] is not None:
mano_pose = torch.FloatTensor(mano_param[hand_type]['pose']).view(-1, 3)
shape = torch.FloatTensor(mano_param[hand_type]['shape']).view(1, -1)
trans = torch.FloatTensor(mano_param[hand_type]['trans']).view(1, 3)
mano_out.append({'type': hand_type, 'pose': mano_pose, 'shape': shape, 'trans': trans})
w2cs = []
projs = []
imgs = []
grayimgs = []
for i, cam_name in enumerate(camera_names):
cam_idx = cam_name.replace('cam', '')
t, R = np.array(cam_param['campos'][str(cam_idx)], dtype=np.float32).reshape(3), np.array(
cam_param['camrot'][str(cam_idx)], dtype=np.float32).reshape(3, 3)
scale_mats = np.eye(4)
scale_mats[:3, :3] = R
cam_t = -np.dot(R, t.reshape(3, 1)).reshape(3) / 1000
scale_mats[:3, 3] = cam_t
focal = np.array(cam_param['focal'][cam_idx], dtype=np.float32).reshape(2)
princpt = np.array(cam_param['princpt'][cam_idx], dtype=np.float32).reshape(2)
cameraIn = np.array([[focal[0], 0, princpt[0]],
[0, focal[1], princpt[1]],
[0, 0, 1]])
P = cameraIn @ scale_mats[:3]
proj, w2c = load_K_Rt_from_P(P[:3])
proj[0, 0] = proj[0, 0] / (res[0] / 2.)
proj[0, 2] = proj[0, 2] / (res[0] / 2.) - 1.
proj[1, 1] = proj[1, 1] / (res[1] / 2.)
proj[1, 2] = proj[1, 2] / (res[1] / 2.) - 1.
proj[2, 2] = 0.
proj[2, 3] = -0.1
proj[3, 2] = 1.
proj[3, 3] = 0.
projs.append(proj.astype(np.float32))
w2cs.append(w2c.astype(np.float32))
img = cv2.imread(
join(data_path, 'images/%s' % split, capture_name, data_name, 'cam' + cam_idx, img_name))
img = img_adjust(img) * 255 if adjust else img
# img = img_contrast_bright(img, 1.2, -0.2, 30)
grayimg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, res)
grayimg = cv2.resize(grayimg, res)
img = torch.from_numpy((img / 255.)).float().cuda()
grayimg = torch.from_numpy((grayimg / 255.)).float().cuda()
imgs.append(img)
grayimgs.append(grayimg)
w2cs = torch.from_numpy(np.stack(w2cs)).permute(0, 2, 1).cuda()
projs = torch.from_numpy(np.stack(projs)).permute(0, 2, 1).cuda()
imgs = torch.stack(imgs, dim=0)
grayimgs = torch.stack(grayimgs, dim=0)
imgs_t.append(imgs)
grayimgs_t.append(grayimgs)
w2cs_t.append(w2cs)
projs_t.append(projs)
mano_out_t.append(mano_out)
imgs_t = torch.stack(imgs_t, dim=0)
grayimgs_t = torch.stack(grayimgs_t, dim=0)
w2cs_t = torch.stack(w2cs_t, dim=0)
projs_t = torch.stack(projs_t, dim=0)
hand_types = []
pose_t = []
shape_t = []
trans_t = []
for mano_out in mano_out_t:
if len(mano_out) == 2:
hand_types = ['left', 'right']
pose_t.append(torch.cat([mano_out[0]['pose'], mano_out[1]['pose']], 0).unsqueeze(0))
shape_t.append(torch.cat([mano_out[0]['shape'], mano_out[1]['shape']], 1))
trans_t.append(torch.cat([mano_out[0]['trans'], mano_out[1]['trans']], 1))
else:
hand_types = [mano_out[0]['type']]
pose_t.append(mano_out[0]['pose'].unsqueeze(0))
shape_t.append(mano_out[0]['shape'])
trans_t.append(mano_out[0]['trans'])
pose_t = torch.cat(pose_t, 0).cuda()
shape_t = torch.cat(shape_t, 0).cuda()
trans_t = torch.cat(trans_t, 0).cuda()
if return_ray:
ray_directions = []
c2ws = torch.inverse(w2cs)
for i, cam_name in enumerate(camera_names):
cam_idx = cam_name.replace('cam', '')
cam_ray_direction = get_ray_directions(res[1], res[0], cam_param['focal'][cam_idx][0],
cam_param['focal'][cam_idx][1],
cam_param['princpt'][cam_idx][0],
cam_param['princpt'][cam_idx][1], ).cuda()
tmp_ray_direction, _ = get_rays(cam_ray_direction, c2ws[i])
ray_direction = tmp_ray_direction.reshape(res[1], res[0], 3)
ray_directions.append(ray_direction)
ray_directions = torch.stack(ray_directions)
return imgs_t, grayimgs_t, masks_t, w2cs_t, projs_t, pose_t, shape_t, trans_t, hand_types, ray_directions, img_names
return imgs_t, grayimgs_t, w2cs_t, projs_t, pose_t, shape_t, trans_t, hand_types, img_names