-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpcm.xml
82 lines (74 loc) · 5.39 KB
/
pcm.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
<tool id="pcm" name="PCM" version="0.1" hidden="false">
<description></description>
<edam_operations>
<edam_operation>operation_3460</edam_operation>
</edam_operations>
<edam_topics>
<edam_topic>topic_0102</edam_topic>
</edam_topics>
<requirements>
<requirement type="package" version="1.8.0">java</requirement>
<requirement type="package" version="2.6.1">singularity</requirement>
</requirements>
<command>
<![CDATA[
bash $__tool_directory__/nextflow run $__tool_directory__/pcm.nf -profile common_singularity_galaxy -c $__tool_directory__/nextflow_global.config --in $input_fasta --modelling_quality $modelling_quality --hfinder_evalue $input_hfinder_threshold --model $input_num_model --template $input_num_template --bootstrap $input_number_bootstrap --matrixout $matrixouttsv --refout $refouttsv --predout $predouttsv --refpdfout $refpdfout --family $input_family --out ./ -with-singularity $__root_dir__/../singularity/pcm.img
]]>
</command>
<stdio>
<exit_code range="0" level="warning" description="job finished" />
<exit_code range="1:" level="fatal" description="Fatal ERROR exit code greater than 1" />
</stdio>
<inputs>
<param format="fasta" name="input_fasta" type="data" label="Fasta file (protein sequence).">
<validator type="dataset_metadata_in_range" min="1" max="100000" metadata_name="sequences" message="The number of sequences in the fasta file must be comprised between 1 and 100000 sequences."/>
</param>
<param name="input_family" type="select" label="Select an ARD family to investigate" multiple="true" display="checkboxes" optional="false">
<option value="arnm">16S rRNA methylase</option>
<option value="aac2">AAC(2')</option>
<option value="aac3_1">AAC(3)-I</option>
<option value="aac3_2">AAC(3)-II</option>
<option value="aac6">AAC(6')</option>
<option value="ant">ANT</option>
<option value="aph">APH</option>
<option value="blaa">Class A beta-lactamase</option>
<option value="blab1">Class B1 beta-lactamase</option>
<option value="blab3">Class B3 beta-lactamase</option>
<option value="blac">Class C beta-lactamase</option>
<option value="blad">Class D beta-lactamase</option>
<option value="dfra">DfrA</option>
<option value="erm">Erm</option>
<option value="fos">Fos</option>
<option value="ldt">Ldt</option>
<option value="mcr">MCR</option>
<option value="qnr">Qnr</option>
<option value="sul">Sul</option>
<option value="tetM">Tet(M)</option>
<option value="tetX">Tet(X)</option>
<option value="van">Van ligase</option>
</param>
<param name="input_hfinder_threshold" type="float" min="1E-50" max="10" value="1E-5" label="E-value threshold for candidate selection" help="--hfinder_evalue; Set the e-value threshold to search candidates; Setting this higher selects more candidates for the PCM default=1E-5"/>
<param name="modelling_quality" type="select" label="Quality level of the modelisation" help="--modelling_quality; Set the modelling quality level; Setting this higher makes the PCM more precise with an increase of calculation time; default=fast">
<option value="fast" selected="true">Fast</option>
<option value="normal">Normal</option>
<option value="high">High</option>
</param>
<param name="input_num_model" type="integer" min="1" max="100" value="6" label="Number of model to calculate for modelling step" help="--model; Setting this higher makes the PCM more precise with an increase of calculation time; default=6"/>
<param name="input_num_template" type="integer" min="1" max="6" value="3" label="Number of template to consider for modelling step" help="--template; Setting this higher makes the PCM more precise with a risk of overfitting; default=3"/>
<param name="input_number_bootstrap" type="integer" min="1" max="100" value="10" label="Number of bootstrap to calculate for candidate classification" help="--bootstrap; Setting this higher makes the PCM more precise with an increase of calculation time; default=3"/>
</inputs>
<outputs>
<data format="tsv" name="matrixouttsv" label="Output pcm result file ${tool.name} on ${on_string}"/>
<data format="tsv" name="refouttsv" label="Output reference result file ${tool.name} on ${on_string}"/>
<data format="tsv" name="predouttsv" label="Output prediction output file ${tool.name} on ${on_string}"/>
<data format="pdf" name="refpdfout" label="Output reference pdf output file ${tool.name} on ${on_string}"/>
</outputs>
<help>
PCM is a generic method using homology modelling to increase the specificity of functional prediction of proteins, especially when they are distantly related from proteins for which a function is known. The principle of PCM is to build structural models and assess their relevance using a specific training approach. PCM uses the list of sequences of reference proteins from a given family, the structures related to this family (they will be used as structural templates in the PDB format) and a series of negative references.
Please cite the following publication if you use PCM: Ruppé E., Ghozlane A., Tap J. et al. (2018) Prediction of the intestinal resistome by a novel 3D-based method. Nature Microbiology.
If you have any comments, questions or suggestions, or need help to use PCM, please contact the author ([email protected])
</help>
<citations>
<citation type="doi">10.1038/s41564-018-0292-6</citation>
</citations>
</tool>