forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hypercovering.tex
2510 lines (2260 loc) · 88.5 KB
/
hypercovering.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Hypercoverings}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
Let $\mathcal{C}$ be a site, see Sites, Definition \ref{sites-definition-site}.
Let $X$ be an object of $\mathcal{C}$.
Given an abelian sheaf $\mathcal{F}$
on $\mathcal{C}$ we would like to compute
its cohomology groups
$$
H^i(X, \mathcal{F}).
$$
According to our general definitions (Cohomology on Sites, Section
\ref{sites-cohomology-section-cohomology-sheaves})
this cohomology group is computed by
choosing an injective resolution
$
0 \to \mathcal{F} \to \mathcal{I}^0 \to \mathcal{I}^1 \to \ldots
$
and setting
$$
H^i(X, \mathcal{F})
=
H^i(
\Gamma(X, \mathcal{I}^0) \to
\Gamma(X, \mathcal{I}^1) \to
\Gamma(X, \mathcal{I}^2)\to \ldots)
$$
The goal of this chapter is to show that we may also compute these
cohomology groups without choosing an injective resolution
(in the case that $\mathcal{C}$ has fibre products). To do this
we will use hypercoverings.
\medskip\noindent
A hypercovering in a site is a generalization of a covering, see
\cite[Expos\'e V, Sec. 7]{SGA4}. Given a hypercovering $K$ of an object
$X$, there is a {\v C}ech to cohomology spectral sequence
expressing the cohomology of an abelian sheaf $\mathcal{F}$
over $X$ in terms of the cohomology of the sheaf over the
components $K_n$ of $K$. It turns out that there are always
enough hypercoverings, so that taking the colimit over all hypercoverings,
the spectral sequence degenerates and the cohomology of $\mathcal{F}$
over $X$ is computed by the colimit of the {\v C}ech cohomology groups.
\medskip\noindent
A more general gadget one can consider is a simplicial augmentation where
one has cohomological descent, see \cite[Expos\'e Vbis]{SGA4}. A nice
manuscript on cohomological descent is the text by Brian Conrad, see
\url{http://math.stanford.edu/~conrad/papers/hypercover.pdf}.
We will come back to these issue in the chapter on simplicial spaces
where we will show, for example, that proper hypercoverings of
``locally compact'' topological spaces are of cohomological
descent (Simplicial Spaces, Section
\ref{spaces-simplicial-section-proper-hypercovering}).
Our method of attack will be to reduce this statement to the {\v C}ech to
cohomology spectral sequence constructed in this chapter.
\section{Hypercoverings}
\label{section-hypercoverings}
\noindent
In order to start we make the following definition.
The letters ``SR'' stand for Semi-Representable.
\begin{definition}
\label{definition-SR}
Let $\mathcal{C}$ be a site. We denote $\text{SR}(\mathcal{C})$
the category of {\it semi-representable objects} defined as follows
\begin{enumerate}
\item objects are families of objects $\{U_i\}_{i \in I}$, and
\item morphisms $\{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$ are given by
a map $\alpha : I \to J$ and for each $i \in I$
a morphism $f_i : U_i \to V_{\alpha(i)}$ of $\mathcal{C}$.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
The category of {\it semi-representable objects over $X$}
is the category
$\text{SR}(\mathcal{C}, X) = \text{SR}(\mathcal{C}/X)$.
\end{definition}
\noindent
This definition differs from the one in \cite[Expos\'e V, Sec. 7]{SGA4},
but it seems flexible enough to do all the required arguments. Note that
this is a ``big'' category. We will later ``bound'' the size of the index
sets $I$ that we need for hypercoverings of $X$. We can then redefine
$\text{SR}(\mathcal{C}, X)$ to become a category. Let's spell out
the objects and morphisms $\text{SR}(\mathcal{C}, X)$:
\begin{enumerate}
\item objects are families of morphisms
$\{U_i \to X\}_{i \in I}$, and
\item morphisms $\{U_i \to X\}_{i \in I} \to
\{V_j \to X\}_{j \in J}$ are given by
a map $\alpha : I \to J$ and for each $i \in I$
a morphism $f_i : U_i \to V_{\alpha(i)}$ over $X$.
\end{enumerate}
There is a forgetful functor
$\text{SR}(\mathcal{C}, X) \to \text{SR}(\mathcal{C})$.
\begin{definition}
\label{definition-SR-F}
Let $\mathcal{C}$ be a site with fibre products.
We denote $F$ the functor {\it which associates a presheaf to a
semi-representable object}. In a formula
\begin{eqnarray*}
F : \text{SR}(\mathcal{C}) & \longrightarrow & \textit{PSh}(\mathcal{C}) \\
\{U_i\}_{i \in I} & \longmapsto & \amalg_{i\in I} h_{U_i}
\end{eqnarray*}
where $h_U$ denotes the representable presheaf associated to
the object $U$.
\end{definition}
\noindent
Given a morphism $U \to X$ we obtain a morphism $h_U \to h_X$ of representable
presheaves. Thus we often think of $F$ on $\text{SR}(\mathcal{C}, X)$
as a functor into the category of presheaves of sets over $h_X$,
namely $\textit{PSh}(\mathcal{C})/h_X$. Here is a picture:
$$
\xymatrix{
\text{SR}(\mathcal{C}, X) \ar[r]_F \ar[d] &
\textit{PSh}(\mathcal{C})/h_X \ar[d] \\
\text{SR}(\mathcal{C}) \ar[r]^F &
\textit{PSh}(\mathcal{C})
}
$$
Next we discuss the existence of limits in the category of semi-representable
objects.
\begin{lemma}
\label{lemma-coprod-prod-SR}
Let $\mathcal{C}$ be a site.
\begin{enumerate}
\item the category $\text{SR}(\mathcal{C})$ has coproducts
and $F$ commutes with them,
\item the functor $F : \text{SR}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$
commutes with limits,
\item if $\mathcal{C}$ has fibre products, then $\text{SR}(\mathcal{C})$
has fibre products,
\item if $\mathcal{C}$ has products of pairs, then
$\text{SR}(\mathcal{C})$ has products of pairs,
\item if $\mathcal{C}$ has equalizers, so does $\text{SR}(\mathcal{C})$, and
\item if $\mathcal{C}$ has a final object, so does $\text{SR}(\mathcal{C})$.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$.
\begin{enumerate}
\item the category $\text{SR}(\mathcal{C}, X)$ has coproducts
and $F$ commutes with them,
\item if $\mathcal{C}$ has fibre products, then $\text{SR}(\mathcal{C}, X)$
has finite limits and
$F : \text{SR}(\mathcal{C}, X) \to \textit{PSh}(\mathcal{C})/h_X$
commutes with them.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of the results on $\text{SR}(\mathcal{C})$.
Proof of (1). The coproduct of $\{U_i\}_{i \in I}$ and $\{V_j\}_{j \in J}$ is
$\{U_i\}_{i \in I} \amalg \{V_j\}_{j \in J}$, in other words, the family
of objects whose index set is $I \amalg J$ and for an element
$k \in I \amalg J$ gives $U_i$ if $k = i \in I$ and gives $V_j$ if
$k = j \in J$. Similarly for coproducts
of families of objects. It is clear that $F$ commutes with these.
\medskip\noindent
Proof of (2). For $U$ in $\Ob(\mathcal{C})$ consider the object $\{U\}$ of
$\text{SR}(\mathcal{C})$. It is clear that
$\Mor_{\text{SR}(\mathcal{C})}(\{U\}, K)) = F(K)(U)$
for $K \in \Ob(\text{SR}(\mathcal{C}))$. Since limits of presheaves
are computed at the level of sections
(Sites, Section \ref{sites-section-limits-colimits-PSh})
we conclude that $F$ commutes with limits.
\medskip\noindent
Proof of (3). Suppose given a morphism
$(\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
and a morphism
$(\beta, g_k) : \{W_k\}_{k \in K} \to \{V_j\}_{j \in J}$.
The fibred product of these morphisms is given by
$$
\{ U_i \times_{f_i, V_j, g_k} W_k\}_{(i, j, k) \in I \times J \times K
\text{ such that } j = \alpha(i) = \beta(k)}
$$
The fibre products exist if $\mathcal{C}$ has fibre products.
\medskip\noindent
Proof of (4). The product of $\{U_i\}_{i \in I}$ and $\{V_j\}_{j \in J}$ is
$\{U_i \times V_j\}_{i \in I, j \in J}$. The products exist if
$\mathcal{C}$ has products.
\medskip\noindent
Proof of (5). The equalizer of two maps
$(\alpha, f_i), (\alpha', f'_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
is
$$
\{
\text{Eq}(f_i, f'_i : U_i \to V_{\alpha(i)})
\}_{i \in I,\ \alpha(i) = \alpha'(i)}
$$
The equalizers exist if $\mathcal{C}$ has equalizers.
\medskip\noindent
Proof of (6). If $X$ is a final object of $\mathcal{C}$, then
$\{X\}$ is a final object of $\text{SR}(\mathcal{C})$.
\medskip\noindent
Proof of the statements about $\text{SR}(\mathcal{C}, X)$.
These follow from the results above applied to the category
$\mathcal{C}/X$ using that
$\text{SR}(\mathcal{C}/X) = \text{SR}(\mathcal{C}, X)$ and that
$\text{PSh}(\mathcal{C}/X) = \text{PSh}(\mathcal{C})/h_X$
(Sites, Lemma \ref{sites-lemma-essential-image-j-shriek} applied
to $\mathcal{C}$ endowed with the chaotic topology). However
we also argue directly as follows.
It is clear that the coproduct of
$\{U_i \to X\}_{i \in I}$ and $\{V_j \to X\}_{j \in J}$
is $\{U_i \to X\}_{i \in I} \amalg \{V_j \to X\}_{j \in J}$
and similarly for coproducts of
families of families of morphisms with target $X$.
The object $\{X \to X\}$ is a final
object of $\text{SR}(\mathcal{C}, X)$.
Suppose given a morphism
$(\alpha, f_i) : \{U_i \to X\}_{i \in I} \to \{V_j \to X\}_{j \in J}$
and a morphism
$(\beta, g_k) : \{W_k \to X\}_{k \in K} \to \{V_j \to X\}_{j \in J}$.
The fibred product of these morphisms is given by
$$
\{ U_i \times_{f_i, V_j, g_k} W_k \to X \}_{(i, j, k) \in I \times J \times K
\text{ such that } j = \alpha(i) = \beta(k)}
$$
The fibre products exist by the assumption that
$\mathcal{C}$ has fibre products.
Thus $\text{SR}(\mathcal{C}, X)$ has finite limits,
see Categories, Lemma \ref{categories-lemma-finite-limits-exist}.
We omit verifying the statements on the functor $F$ in this case.
\end{proof}
\begin{definition}
\label{definition-covering-SR}
Let $\mathcal{C}$ be a site. Let
$f = (\alpha, f_i) : \{U_i\}_{i \in I} \to \{V_j\}_{j \in J}$
be a morphism in the category $\text{SR}(\mathcal{C})$.
We say that $f$ is a {\it covering} if for every $j \in J$ the
family of morphisms $\{U_i \to V_j\}_{i \in I, \alpha(i) = j}$
is a covering for the site $\mathcal{C}$.
Let $X$ be an object of $\mathcal{C}$.
A morphism $K \to L$ in $\text{SR}(\mathcal{C}, X)$ is
a {\it covering} if its image in $\text{SR}(\mathcal{C})$ is
a covering.
\end{definition}
\begin{lemma}
\label{lemma-covering-permanence}
Let $\mathcal{C}$ be a site.
\begin{enumerate}
\item A composition of coverings in $\text{SR}(\mathcal{C})$
is a covering.
\item If $K \to L$ is a covering in $\text{SR}(\mathcal{C})$
and $L' \to L$ is a morphism, then $L' \times_L K$ exists
and $L' \times_L K \to L'$ is a covering.
\item If $\mathcal{C}$ has products of pairs, and
$A \to B$ and $K \to L$ are coverings in $\text{SR}(\mathcal{C})$,
then $A \times K \to B \times L$ is a covering.
\end{enumerate}
Let $X \in \Ob(\mathcal{C})$. Then (1) and (2) holds for
$\text{SR}(\mathcal{C}, X)$ and (3) holds if $\mathcal{C}$
has fibre products.
\end{lemma}
\begin{proof}
Part (1) is immediate from the axioms of a site.
Part (2) follows by the construction of fibre products
in $\text{SR}(\mathcal{C})$ in the proof of
Lemma \ref{lemma-coprod-prod-SR}
and the requirement that the morphisms in a covering
of $\mathcal{C}$ are representable.
Part (3) follows by thinking of $A \times K \to B \times L$
as the composition $A \times K \to B \times K \to B \times L$
and hence a composition of basechanges of coverings.
The final statement follows because $\text{SR}(\mathcal{C}, X) =
\text{SR}(\mathcal{C}/X)$.
\end{proof}
\noindent
By Lemma \ref{lemma-coprod-prod-SR} and
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}
the coskeleton of a truncated simplicial object of
$\text{SR}(\mathcal{C}, X)$ exists if $\mathcal{C}$ has fibre products.
Hence the following definition makes sense.
\begin{definition}
\label{definition-hypercovering}
Let $\mathcal{C}$ be a site. Assume $\mathcal{C}$ has fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
A {\it hypercovering of $X$} is a simplicial object
$K$ of $\text{SR}(\mathcal{C}, X)$ such that
\begin{enumerate}
\item The object $K_0$ is a covering of $X$ for the site $\mathcal{C}$.
\item For every $n \geq 0$ the canonical morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
is a covering in the sense defined above.
\end{enumerate}
\end{definition}
\noindent
Condition (1) makes sense since each object of
$\text{SR}(\mathcal{C}, X)$ is after all a family
of morphisms with target $X$. It could also be
formulated as saying that the morphism of $K_0$ to
the final object of $\text{SR}(\mathcal{C}, X)$
is a covering.
\begin{example}
\label{example-cech}
Let $\{U_i \to X\}_{i \in I}$ be a covering of the site $\mathcal{C}$.
Set $K_0 = \{U_i \to X\}_{i \in I}$.
Then $K_0$ is a $0$-truncated simplicial object of
$\text{SR}(\mathcal{C}, X)$. Hence we may form
$$
K = \text{cosk}_0 K_0.
$$
Clearly $K$ passes condition (1) of Definition \ref{definition-hypercovering}.
Since all the morphisms $K_{n + 1} \to (\text{cosk}_n \text{sk}_n K)_{n + 1}$
are isomorphisms by
Simplicial, Lemma \ref{simplicial-lemma-cosk-up}
it also passes condition (2). Note that
the terms $K_n$ are the usual
$$
K_n = \{
U_{i_0} \times_X U_{i_1} \times_X \ldots \times_X U_{i_n} \to X
\}_{(i_0, i_1, \ldots, i_n) \in I^{n + 1}}
$$
\end{example}
\begin{lemma}
\label{lemma-hypercoverings-set}
Let $\mathcal{C}$ be a site with fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
The collection of all hypercoverings of $X$ forms a set.
\end{lemma}
\begin{proof}
Since $\mathcal{C}$ is a site, the set of all coverings of
$X$ forms a set. Thus we see that the collection
of possible $K_0$ forms a set. Suppose we have shown that
the collection of all possible $K_0, \ldots, K_n$ form
a set. Then it is enough to show that given
$K_0, \ldots, K_n$ the collection of all possible
$K_{n + 1}$ forms a set. And this is clearly true since
we have to choose $K_{n + 1}$ among all possible coverings
of $(\text{cosk}_n \text{sk}_n K)_{n + 1}$.
\end{proof}
\begin{remark}
\label{remark-hypercoverings-really-set}
The lemma does not just say that there is a cofinal
system of choices of hypercoverings that is a set,
but that really the hypercoverings form a set.
\end{remark}
\noindent
The category of presheaves on $\mathcal{C}$ has
finite (co)limits. Hence the functors $\text{cosk}_n$
exists for presheaves of sets.
\begin{lemma}
\label{lemma-hypercovering-F}
Let $\mathcal{C}$ be a site with fibre products.
Let $X \in \Ob(\mathcal{C})$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Consider the simplicial object $F(K)$ of $\textit{PSh}(\mathcal{C})$,
endowed with its augmentation to the constant simplicial presheaf $h_X$.
\begin{enumerate}
\item The morphism of presheaves $F(K)_0 \to h_X$ becomes
a surjection after sheafification.
\item The morphism
$$
(d^1_0, d^1_1) :
F(K)_1
\longrightarrow
F(K)_0 \times_{h_X} F(K)_0
$$
becomes a surjection after sheafification.
\item For every $n \geq 1$ the morphism
$$
F(K)_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n F(K))_{n + 1}
$$
turns into a surjection after sheafification.
\end{enumerate}
\end{lemma}
\begin{proof}
We will use the fact that if
$\{U_i \to U\}_{i \in I}$ is a covering of the site
$\mathcal{C}$, then the morphism
$$
\amalg_{i \in I} h_{U_i} \to h_U
$$
becomes surjective after sheafification, see
Sites, Lemma \ref{sites-lemma-covering-surjective-after-sheafification}.
Thus the first assertion follows immediately.
\medskip\noindent
For the second assertion, note that according to
Simplicial, Example \ref{simplicial-example-cosk0}
the simplicial object $\text{cosk}_0 \text{sk}_0 K$
has terms $K_0 \times \ldots \times K_0$. Thus
according to the definition of a hypercovering we
see that $(d^1_0, d^1_1) : K_1 \to K_0 \times K_0$ is a
covering. Hence (2) follows from the claim above
and the fact that $F$ transforms products into fibred
products over $h_X$.
\medskip\noindent
For the third, we claim that
$\text{cosk}_n \text{sk}_n F(K) =
F(\text{cosk}_n \text{sk}_n K)$ for $n \geq 1$.
To prove this, denote temporarily $F'$ the functor
$\text{SR}(\mathcal{C}, X) \to \textit{PSh}(\mathcal{C})/h_X$.
By Lemma \ref{lemma-coprod-prod-SR} the functor
$F'$ commutes with finite limits.
By our description of the $\text{cosk}_n$ functor in
Simplicial, Section \ref{simplicial-section-skeleton}
we see that $\text{cosk}_n \text{sk}_n F'(K) =
F'(\text{cosk}_n \text{sk}_n K)$.
Recall that the category used in the description of
$(\text{cosk}_n U)_m$ in
Simplicial, Lemma \ref{simplicial-lemma-existence-cosk}
is the category $(\Delta/[m])^{opp}_{\leq n}$. It is an
amusing exercise to show that $(\Delta/[m])_{\leq n}$ is
a connected category (see
Categories, Definition \ref{categories-definition-category-connected})
as soon as $n \geq 1$. Hence,
Categories, Lemma \ref{categories-lemma-connected-limit-over-X}
shows that $\text{cosk}_n \text{sk}_n F'(K) =
\text{cosk}_n \text{sk}_n F(K)$. Whence the claim.
Property (2) follows from this, because now we see that
the morphism in (2) is the result of applying the
functor $F$ to a covering as in Definition \ref{definition-covering-SR},
and the result follows from the first fact mentioned
in this proof.
\end{proof}
\section{Acyclicity}
\label{section-acyclicity}
\noindent
Let $\mathcal{C}$ be a site.
For a presheaf of sets $\mathcal{F}$ we denote $\mathbf{Z}_\mathcal{F}$
the presheaf of abelian groups defined by the rule
$$
\mathbf{Z}_\mathcal{F}(U) = \text{free abelian group on }\mathcal{F}(U).
$$
We will sometimes call this the {\it free abelian presheaf on $\mathcal{F}$}.
Of course the construction $\mathcal{F} \mapsto \mathbf{Z}_\mathcal{F}$
is a functor and it is left adjoint to the forgetful functor
$\textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$.
Of course the sheafification $\mathbf{Z}_\mathcal{F}^\#$ is
a sheaf of abelian groups, and the functor
$\mathcal{F} \mapsto \mathbf{Z}_\mathcal{F}^\#$ is a
left adjoint as well. We sometimes call $\mathbf{Z}_\mathcal{F}^\#$
the {\it free abelian sheaf on $\mathcal{F}$}.
\medskip\noindent
For an object $X$ of the site $\mathcal{C}$ we denote
$\mathbf{Z}_X$ the free abelian presheaf on $h_X$, and
we denote $\mathbf{Z}_X^\#$ its sheafification.
\begin{definition}
\label{definition-homology}
Let $\mathcal{C}$ be a site.
Let $K$ be a simplicial object of $\textit{PSh}(\mathcal{C})$.
By the above we get a simplicial object $\mathbf{Z}_K^\#$ of
$\textit{Ab}(\mathcal{C})$. We can take its associated
complex of abelian presheaves $s(\mathbf{Z}_K^\#)$, see
Simplicial, Section \ref{simplicial-section-complexes}.
The {\it homology of $K$} is the homology of the
complex of abelian sheaves $s(\mathbf{Z}_K^\#)$.
\end{definition}
\noindent
In other words, the {\it $i$th homology $H_i(K)$ of $K$}
is the sheaf of abelian groups $H_i(K) = H_i(s(\mathbf{Z}_K^\#))$.
In this section we worry about the homology in case $K$
is a hypercovering of an object $X$ of $\mathcal{C}$.
\begin{lemma}
\label{lemma-compare-cosk0}
Let $\mathcal{C}$ be a site.
Let $\mathcal{F} \to \mathcal{G}$ be a morphism
of presheaves of sets. Denote $K$ the simplicial
object of $\textit{PSh}(\mathcal{C})$ whose $n$th
term is the $(n + 1)$st fibre product of $\mathcal{F}$
over $\mathcal{G}$, see
Simplicial, Example \ref{simplicial-example-fibre-products-simplicial-object}.
Then, if $\mathcal{F} \to \mathcal{G}$ is surjective after
sheafification, we have
$$
H_i(K) =
\left\{
\begin{matrix}
0 & \text{if} & i > 0\\
\mathbf{Z}_\mathcal{G}^\# & \text{if} & i = 0
\end{matrix}
\right.
$$
The isomorphism in degree $0$ is given by the
morphism $H_0(K) \to \mathbf{Z}_\mathcal{G}^\#$
coming from the map $(\mathbf{Z}_K^\#)_0 =
\mathbf{Z}_\mathcal{F}^\# \to \mathbf{Z}_\mathcal{G}^\#$.
\end{lemma}
\begin{proof}
Let $\mathcal{G}' \subset \mathcal{G}$ be the image of
the morphism $\mathcal{F} \to \mathcal{G}$.
Let $U \in \Ob(\mathcal{C})$. Set
$A = \mathcal{F}(U)$ and $B = \mathcal{G}'(U)$.
Then the simplicial set $K(U)$ is equal to the simplicial
set with $n$-simplices given by
$$
A \times_B A \times_B \ldots \times_B A\ (n + 1 \text{ factors)}.
$$
By Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one-equivalence}
the morphism $K(U) \to B$ is a trivial Kan fibration.
Thus it is a homotopy equivalence
(Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one-equivalence}).
Hence applying the functor ``free abelian group on'' to this
we deduce that
$$
\mathbf{Z}_K(U) \longrightarrow \mathbf{Z}_B
$$
is a homotopy equivalence. Note that $s(\mathbf{Z}_B)$ is
the complex
$$
\ldots \to
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{0}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{1}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \xrightarrow{0}
\bigoplus\nolimits_{b \in B}\mathbf{Z} \to 0
$$
see Simplicial, Lemma \ref{simplicial-lemma-homology-eilenberg-maclane}.
Thus we see that
$H_i(s(\mathbf{Z}_K(U))) = 0$ for $i > 0$, and
$H_0(s(\mathbf{Z}_K(U))) = \bigoplus_{b \in B}\mathbf{Z}
= \bigoplus_{s \in \mathcal{G}'(U)} \mathbf{Z}$.
These identifications are compatible with restriction
maps.
\medskip\noindent
We conclude that $H_i(s(\mathbf{Z}_K)) = 0$ for $i > 0$ and
$H_0(s(\mathbf{Z}_K)) = \mathbf{Z}_{\mathcal{G}'}$, where here
we compute homology groups in $\textit{PAb}(\mathcal{C})$. Since
sheafification is an exact functor we deduce the result
of the lemma. Namely, the exactness implies
that $H_0(s(\mathbf{Z}_K))^\# = H_0(s(\mathbf{Z}_K^\#))$,
and similarly for other indices.
\end{proof}
\begin{lemma}
\label{lemma-acyclicity}
Let $\mathcal{C}$ be a site.
Let $f : L \to K$ be a morphism of
simplicial objects of $\textit{PSh}(\mathcal{C})$.
Let $n \geq 0$ be an integer.
Assume that
\begin{enumerate}
\item For $i < n$ the morphism $L_i \to K_i$ is an isomorphism.
\item The morphism $L_n \to K_n$ is surjective after sheafification.
\item The canonical map $L \to \text{cosk}_n \text{sk}_n L$ is an isomorphism.
\item The canonical map $K \to \text{cosk}_n \text{sk}_n K$ is an isomorphism.
\end{enumerate}
Then $H_i(f) : H_i(L) \to H_i(K)$ is an isomorphism.
\end{lemma}
\begin{proof}
This proof is exactly the same as the proof of
Lemma \ref{lemma-compare-cosk0} above. Namely,
we first let $K_n' \subset K_n$ be the sub presheaf
which is the image of the map $L_n \to K_n$. Assumption
(2) means that the sheafification of $K_n'$ is equal to
the sheafification of $K_n$. Moreover, since $L_i = K_i$
for all $i < n$ we see that get an $n$-truncated
simplicial presheaf $U$ by taking
$U_0 = L_0 = K_0, \ldots, U_{n - 1} = L_{n - 1} = K_{n - 1}, U_n = K'_n$.
Denote $K' = \text{cosk}_n U$, a simplicial presheaf.
Because we can construct $K'_m$ as a finite limit, and
since sheafification is exact, we see that
$(K'_m)^\# = K_m$. In other words, $(K')^\# = K^\#$.
We conclude, by exactness of sheafification once more,
that $H_i(K) = H_i(K')$. Thus it suffices to prove the lemma
for the morphism $L \to K'$, in other words, we may
assume that $L_n \to K_n$ is a surjective morphism
of {\it presheaves}!
\medskip\noindent
In this case, for any object $U$ of $\mathcal{C}$ we
see that the morphism of simplicial sets
$$
L(U) \longrightarrow K(U)
$$
satisfies all the assumptions of
Simplicial, Lemma \ref{simplicial-lemma-section}.
Hence it is a trivial Kan fibration. In particular it is
a homotopy equivalence
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-homotopy}).
Thus
$$
\mathbf{Z}_L(U) \longrightarrow \mathbf{Z}_K(U)
$$
is a homotopy equivalence too. This for all $U$.
The result follows.
\end{proof}
\begin{lemma}
\label{lemma-acyclic-hypercover-sheaves}
Let $\mathcal{C}$ be a site.
Let $K$ be a simplicial presheaf.
Let $\mathcal{G}$ be a presheaf.
Let $K \to \mathcal{G}$ be an augmentation of $K$
towards $\mathcal{G}$. Assume that
\begin{enumerate}
\item The morphism of presheaves $K_0 \to \mathcal{G}$ becomes
a surjection after sheafification.
\item The morphism
$$
(d^1_0, d^1_1) :
K_1
\longrightarrow
K_0 \times_\mathcal{G} K_0
$$
becomes a surjection after sheafification.
\item For every $n \geq 1$ the morphism
$$
K_{n + 1} \longrightarrow (\text{cosk}_n \text{sk}_n K)_{n + 1}
$$
turns into a surjection after sheafification.
\end{enumerate}
Then $H_i(K) = 0$ for $i > 0$ and
$H_0(K) = \mathbf{Z}_\mathcal{G}^\#$.
\end{lemma}
\begin{proof}
Denote $K^n = \text{cosk}_n \text{sk}_n K$ for $n \geq 1$.
Define $K^0$ as the simplicial object with terms
$(K^0)_n$ equal to the $(n + 1)$-fold fibred product
$K_0 \times_\mathcal{G} \ldots \times_\mathcal{G} K_0$,
see Simplicial,
Example \ref{simplicial-example-fibre-products-simplicial-object}.
We have morphisms
$$
K \longrightarrow \ldots \to K^n \to K^{n - 1} \to \ldots \to K^1 \to K^0.
$$
The morphisms $K \to K^i$, $K^j \to K^i$ for $j \geq i \geq 1$ come
from the universal properties of the $\text{cosk}_n$ functors.
The morphism $K^1 \to K^0$ is the canonical morphism
from
Simplicial, Remark \ref{simplicial-remark-augmentation}.
We also recall that $K^0 \to \text{cosk}_1 \text{sk}_1 K^0$
is an isomorphism, see
Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one}.
\medskip\noindent
By Lemma \ref{lemma-compare-cosk0} we see that
$H_i(K^0) = 0$ for $i > 0$ and $H_0(K^0) = \mathbf{Z}_\mathcal{G}^\#$.
\medskip\noindent
Pick $n \geq 1$. Consider the morphism $K^n \to K^{n - 1}$.
It is an isomorphism on terms of degree $< n$.
Note that $K^n \to \text{cosk}_n \text{sk}_n K^n$ and
$K^{n - 1} \to \text{cosk}_n \text{sk}_n K^{n - 1}$
are isomorphisms. Note that $(K^n)_n = K_n$ and
that $(K^{n - 1})_n = (\text{cosk}_{n - 1} \text{sk}_{n - 1} K)_n$.
Hence by assumption, we have that $(K^n)_n \to (K^{n - 1})_n$
is a morphism of presheaves which becomes surjective after
sheafification. By Lemma \ref{lemma-acyclicity} we conclude that
$H_i(K^n) = H_i(K^{n - 1})$.
Combined with the above this proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-hypercovering-acyclic}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
The homology of the simplicial presheaf $F(K)$ is
$0$ in degrees $> 0$ and equal to $\mathbf{Z}_X^\#$
in degree $0$.
\end{lemma}
\begin{proof}
Combine Lemmas \ref{lemma-acyclic-hypercover-sheaves}
and \ref{lemma-hypercovering-F}.
\end{proof}
\section{{\v C}ech cohomology and hypercoverings}
\label{section-hyper-cech}
\noindent
Let $\mathcal{C}$ be a site. Consider a presheaf of
abelian groups $\mathcal{F}$ on the site $\mathcal{C}$.
It defines a functor
\begin{eqnarray*}
\mathcal{F} : \text{SR}(\mathcal{C})^{opp}
& \longrightarrow &
\textit{Ab} \\
\{U_i\}_{i \in I} &
\longmapsto &
\prod\nolimits_{i \in I} \mathcal{F}(U_i)
\end{eqnarray*}
Thus a simplicial object $K$ of $\text{SR}(\mathcal{C})$
is turned into a cosimplicial object $\mathcal{F}(K)$ of $\textit{Ab}$.
The cochain complex $s(\mathcal{F})(K))$ associated to $\mathcal{F}(K)$
(Simplicial, Section
\ref{simplicial-section-dold-kan-cosimplicial})
is called the {\v C}ech complex of $\mathcal{F}$ with
respect to the simplicial object $K$. We set
$$
\check{H}^i(K, \mathcal{F})
=
H^i(s(\mathcal{F}(K))).
$$
and we call it the $i$th {\v C}ech cohomology group
of $\mathcal{F}$ with respect to $K$.
In this section we prove analogues of some of the results for
{\v C}ech cohomology of open coverings proved in
Cohomology, Sections \ref{cohomology-section-cech},
\ref{cohomology-section-cech-functor} and
\ref{cohomology-section-cech-cohomology-cohomology}.
\begin{lemma}
\label{lemma-h0-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Then $\check{H}^0(K, \mathcal{F}) = \mathcal{F}(X)$.
\end{lemma}
\begin{proof}
We have
$$
\check{H}^0(K, \mathcal{F})
=
\Ker(\mathcal{F}(K_0) \longrightarrow \mathcal{F}(K_1))
$$
Write $K_0 = \{U_i \to X\}$. It is a covering in the site
$\mathcal{C}$. As well, we have that $K_1 \to K_0 \times K_0$
is a covering in $\text{SR}(\mathcal{C}, X)$. Hence we may
write $K_1 = \amalg_{i_0, i_1 \in I} \{V_{i_0i_1j} \to X\}$
so that the morphism $K_1 \to K_0 \times K_0$ is given
by coverings $\{V_{i_0i_1j} \to U_{i_0} \times_X U_{i_1}\}$
of the site $\mathcal{C}$. Thus we can further identify
$$
\check{H}^0(K, \mathcal{F})
=
\Ker(
\prod\nolimits_i \mathcal{F}(U_i)
\longrightarrow
\prod\nolimits_{i_0i_1 j} \mathcal{F}(V_{i_0i_1j})
)
$$
with obvious map. The sheaf property of $\mathcal{F}$
implies that $\check{H}^0(K, \mathcal{F}) = H^0(X, \mathcal{F})$.
\end{proof}
\noindent
In fact this property characterizes the abelian sheaves among all
abelian presheaves on $\mathcal{C}$ of course.
The analogue of Cohomology, Lemma \ref{lemma-injective-trivial-cech}
in this case is the following.
\begin{lemma}
\label{lemma-injective-trivial-cech}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{I}$ be an injective sheaf of abelian groups on $\mathcal{C}$.
Then
$$
\check{H}^p(K, \mathcal{I}) =
\left\{
\begin{matrix}
\mathcal{I}(X) & \text{if} & p = 0 \\
0 & \text{if} & p > 0
\end{matrix}
\right.
$$
\end{lemma}
\begin{proof}
Observe that for any object $Z = \{U_i \to X\}$ of
$\text{SR}(\mathcal{C}, X)$ and any abelian sheaf
$\mathcal{F}$ on $\mathcal{C}$ we have
\begin{eqnarray*}
\mathcal{F}(Z)
& = &
\prod \mathcal{F}(U_i) \\
& = &
\prod \Mor_{\textit{PSh}(\mathcal{C})}(h_{U_i}, \mathcal{F})\\
& = &
\Mor_{\textit{PSh}(\mathcal{C})}(F(Z), \mathcal{F})\\
& = &
\Mor_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{F(Z)}, \mathcal{F}) \\
& = &
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_{F(Z)}^\#, \mathcal{F})
\end{eqnarray*}
Thus we see, for any simplicial object $K$ of
$\text{SR}(\mathcal{C}, X)$ that we have
\begin{equation}
\label{equation-identify-cech}
s(\mathcal{F}(K))
=
\Hom_{\textit{Ab}(\mathcal{C})}(s(\mathbf{Z}_{F(K)}^\#), \mathcal{F})
\end{equation}
see Definition \ref{definition-homology} for notation.
The complex of sheaves $s(\mathbf{Z}_{F(K)}^\#)$ is quasi-isomorphic
to $\mathbf{Z}_X^\#$ if $K$ is a hypercovering, see
Lemma \ref{lemma-hypercovering-acyclic}. We conclude
that if $\mathcal{I}$ is an injective abelian sheaf, and
$K$ a hypercovering, then the complex $s(\mathcal{I}(K))$
is acyclic except possibly in degree $0$.
In other words, we have
$$
\check{H}^i(K, \mathcal{I}) = 0
$$
for $i > 0$. Combined with Lemma \ref{lemma-h0-cech} the lemma is proved.
\end{proof}
\noindent
Next we come to the analogue of Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-cech-spectral-sequence}.
Let $\mathcal{C}$ be a site.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
Recall that $\underline{H}^i(\mathcal{F})$ indicates the presheaf
of abelian groups on $\mathcal{C}$ which is defined by the
rule $\underline{H}^i(\mathcal{F}) : U \longmapsto H^i(U, \mathcal{F})$.
We extend this to $\text{SR}(\mathcal{C})$ as in the introduction
to this section.
\begin{lemma}
\label{lemma-cech-spectral-sequence}
Let $\mathcal{C}$ be a site with fibre products.
Let $X$ be an object of $\mathcal{C}$.
Let $K$ be a hypercovering of $X$.
Let $\mathcal{F}$ be a sheaf of abelian groups on $\mathcal{C}$.
There is a map
$$
s(\mathcal{F}(K))
\longrightarrow
R\Gamma(X, \mathcal{F})
$$
in $D^{+}(\textit{Ab})$ functorial in $\mathcal{F}$, which induces
natural transformations
$$
\check{H}^i(K, -) \longrightarrow H^i(X, -)
$$
as functors $\textit{Ab}(\mathcal{C}) \to \textit{Ab}$. Moreover,
there is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))
$$
converging to $H^{p + q}(X, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$ and
in the hypercovering $K$.
\end{lemma}
\begin{proof}
We could prove this by the same method as employed in the corresponding
lemma in the chapter on cohomology. Instead let us prove this by a
double complex argument.
\medskip\noindent
Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$
in the category of abelian sheaves on $\mathcal{C}$. Consider the
double complex $A^{\bullet, \bullet}$ with terms
$$
A^{p, q} = \mathcal{I}^q(K_p)
$$
where the differential $d_1^{p, q} : A^{p, q} \to A^{p + 1, q}$
is the one coming from the differential $\mathcal{I}^p \to \mathcal{I}^{p + 1}$
and the differential $d_2^{p, q} : A^{p, q} \to A^{p, q + 1}$ is the
one coming from the differential on the complex
$s(\mathcal{I}^p(K))$ associated to the cosimplicial abelian group
$\mathcal{I}^p(K)$ as explained above.
As usual we denote $sA^\bullet$ the simple complex associated to
the double complex $A^{\bullet, \bullet}$.
We will use the two spectral
sequences $({}'E_r, {}'d_r)$ and $({}''E_r, {}''d_r)$
associated to this double complex, see
Homology, Section \ref{homology-section-double-complex}.
\medskip\noindent
By Lemma \ref{lemma-injective-trivial-cech}
the complexes $s(\mathcal{I}^p(K))$ are acyclic in
positive degrees and have $H^0$ equal to $\mathcal{I}^p(X)$.
Hence by
Homology, Lemma \ref{homology-lemma-double-complex-gives-resolution}
and its proof the spectral sequence $({}'E_r, {}'d_r)$ degenerates,
and the natural map
$$
\mathcal{I}^\bullet(X) \longrightarrow sA^\bullet
$$
is a quasi-isomorphism of complexes of abelian groups. In particular
we conclude that $H^n(sA^\bullet) = H^n(X, \mathcal{F})$.
\medskip\noindent
The map $s(\mathcal{F}(K)) \longrightarrow R\Gamma(X, \mathcal{F})$ of
the lemma is the composition of the natural map
$s(\mathcal{F}(K)) \to sA^\bullet$ followed by the inverse
of the displayed quasi-isomorphism above. This works because
$\mathcal{I}^\bullet(X)$ is a representative of $R\Gamma(X, \mathcal{F})$.
\medskip\noindent
Consider the spectral sequence $({}''E_r, {}''d_r)_{r \geq 0}$. By
Homology, Lemma \ref{homology-lemma-ss-double-complex}
we see that
$$
{}''E_2^{p, q} = H^p_{II}(H^q_I(A^{\bullet, \bullet}))
$$
In other words, we first take cohomology with respect to
$d_1$ which gives the groups
${}''E_1^{p, q} = \underline{H}^p(\mathcal{F})(K_q)$.
Hence it is indeed the case (by the description of the differential
${}''d_1$) that
${}''E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F}))$.
And by the other spectral sequence above we see that this one
converges to $H^n(X, \mathcal{F})$ as desired.
\medskip\noindent
We omit the proof of the statements regarding the functoriality of
the above constructions in the abelian sheaf $\mathcal{F}$ and the
hypercovering $K$.
\end{proof}