forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
defos.tex
3647 lines (3412 loc) · 134 KB
/
defos.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Deformation Theory}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
The goal of this chapter is to give a (relatively) gentle introduction to
deformation theory of modules, morphisms, etc. In this chapter we deal with
those results that can be proven using the naive cotangent complex. In
the chapter on the cotangent complex we will extend these results a little
bit. The advanced reader may wish to consult the treatise by Illusie on this
subject, see \cite{cotangent}.
\section{Deformations of rings and the naive cotangent complex}
\label{section-deformations}
\noindent
In this section we use the naive cotangent complex to do a little bit
of deformation theory. We start with a surjective ring map $A' \to A$
whose kernel is an ideal $I$ of square zero. Moreover we assume
given a ring map $A \to B$, a $B$-module $N$, and an $A$-module map
$c : I \to N$. In this section we ask ourselves whether we can find
the question mark fitting into the following diagram
\begin{equation}
\label{equation-to-solve}
\vcenter{
\xymatrix{
0 \ar[r] & N \ar[r] & {?} \ar[r] & B \ar[r] & 0 \\
0 \ar[r] & I \ar[u]^c \ar[r] & A' \ar[u] \ar[r] & A \ar[u] \ar[r] & 0
}
}
\end{equation}
and moreover how unique the solution is (if it exists). More precisely,
we look for a surjection of $A'$-algebras $B' \to B$ whose kernel is
identified with $N$ such that $A' \to B'$ induces the given map $c$.
We will say $B'$ is a {\it solution} to (\ref{equation-to-solve}).
\begin{lemma}
\label{lemma-huge-diagram}
Given a commutative diagram
$$
\xymatrix{
& 0 \ar[r] & N_2 \ar[r] & B'_2 \ar[r] & B_2 \ar[r] & 0 \\
& 0 \ar[r]|\hole & I_2 \ar[u]_{c_2} \ar[r] &
A'_2 \ar[u] \ar[r]|\hole & A_2 \ar[u] \ar[r] & 0 \\
0 \ar[r] & N_1 \ar[ruu] \ar[r] & B'_1 \ar[r] & B_1 \ar[ruu] \ar[r] & 0 \\
0 \ar[r] & I_1 \ar[ruu]|\hole \ar[u]^{c_1} \ar[r] &
A'_1 \ar[ruu]|\hole \ar[u] \ar[r] & A_1 \ar[ruu]|\hole \ar[u] \ar[r] & 0
}
$$
with front and back solutions to (\ref{equation-to-solve}) we have
\begin{enumerate}
\item There exist a canonical element in
$\text{Ext}^1_{B_1}(\NL_{B_1/A_1}, N_2)$
whose vanishing is a necessary and sufficient condition for the existence
of a ring map $B'_1 \to B'_2$ fitting into the diagram.
\item If there exists a map $B'_1 \to B'_2$ fitting into the diagram
the set of all such maps is a principal homogeneous space under
$\Hom_{B_1}(\Omega_{B_1/A_1}, N_2)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $E = B_1$ viewed as a set.
Consider the surjection $A_1[E] \to B_1$ with kernel $J$ used
to define the naive cotangent complex by the formula
$$
\NL_{B_1/A_1} = (J/J^2 \to \Omega_{A_1[E]/A_1} \otimes_{A_1[E]} B_1)
$$
in
Algebra, Section \ref{algebra-section-netherlander}.
Since $\Omega_{A_1[E]/A_1} \otimes B_1$ is a free
$B_1$-module we have
$$
\text{Ext}^1_{B_1}(\NL_{B_1/A_1}, N_2) =
\frac{\Hom_{B_1}(J/J^2, N_2)}
{\Hom_{B_1}(\Omega_{A_1[E]/A_1} \otimes B_1, N_2)}
$$
We will construct an obstruction in the module on the right.
Let $J' = \Ker(A'_1[E] \to B_1)$. Note that there is a surjection
$J' \to J$ whose kernel is $I_1A_1[E]$.
For every $e \in E$ denote $x_e \in A_1[E]$ the corresponding variable.
Choose a lift $y_e \in B'_1$ of the image of $x_e$ in $B_1$ and
a lift $z_e \in B'_2$ of the image of $x_e$ in $B_2$.
These choices determine $A'_1$-algebra maps
$$
A'_1[E] \to B'_1 \quad\text{and}\quad A'_1[E] \to B'_2
$$
The first of these gives a map $J' \to N_1$, $f' \mapsto f'(y_e)$
and the second gives a map $J' \to N_2$, $f' \mapsto f'(z_e)$.
A calculation shows that these maps annihilate $(J')^2$.
Because the left square of the diagram (involving $c_1$ and $c_2$)
commutes we see that these maps agree on $I_1A_1[E]$ as maps into $N_2$.
Observe that $B'_1$ is the pushout of $J' \to A'_1[B_1]$ and $J' \to N_1$.
Thus, if the maps $J' \to N_1 \to N_2$ and $J' \to N_2$ agree, then we
obtain a map $B'_1 \to B'_2$ fitting into the diagram.
Thus we let the obstruction be the class of the map
$$
J/J^2 \to N_2,\quad f \mapsto f'(z_e) - \nu(f'(y_e))
$$
where $\nu : N_1 \to N_2$ is the given map and where $f' \in J'$
is a lift of $f$. This is well defined by our remarks above.
Note that we have the freedom
to modify our choices of $z_e$ into $z_e + \delta_{2, e}$
and $y_e$ into $y_e + \delta_{1, e}$ for some $\delta_{i, e} \in N_i$.
This will modify the map above into
$$
f \mapsto f'(z_e + \delta_{2, e}) - \nu(f'(y_e + \delta_{1, e})) =
f'(z_e) - \nu(f'(z_e)) +
\sum (\delta_{2, e} - \nu(\delta_{1, e}))\frac{\partial f}{\partial x_e}
$$
This means exactly that we are modifying the map $J/J^2 \to N_2$
by the composition $J/J^2 \to \Omega_{A_1[E]/A_1} \otimes B_1 \to N_2$
where the second map sends $\text{d}x_e$ to
$\delta_{2, e} - \nu(\delta_{1, e})$. Thus our obstruction is well defined
and is zero if and only if a lift exists.
\medskip\noindent
Part (2) comes from the observation that given two maps
$\varphi, \psi : B'_1 \to B'_2$ fitting into the diagram, then
$\varphi - \psi$ factors through a map $D : B_1 \to N_2$ which
is an $A_1$-derivation:
\begin{align*}
D(fg) & = \varphi(f'g') - \psi(f'g') \\
& =
\varphi(f')\varphi(g') - \psi(f')\psi(g') \\
& =
(\varphi(f') - \psi(f'))\varphi(g') + \psi(f')(\varphi(g') - \psi(g')) \\
& =
gD(f) + fD(g)
\end{align*}
Thus $D$ corresponds to a unique $B_1$-linear map
$\Omega_{B_1/A_1} \to N_2$. Conversely, given such a linear map
we get a derivation $D$ and given a ring map $\psi : B'_1 \to B'_2$
fitting into the diagram
the map $\psi + D$ is another ring map fitting into the diagram.
\end{proof}
\noindent
The naive cotangent complex isn't good enough to contain all information
regarding obstructions to finding solutions to (\ref{equation-to-solve}).
However, if the ring map is a local complete intersection, then the
obstruction vanishes. This is a kind of lifting result; observe that
for syntomic ring maps we have proved a rather strong lifting result in
Smoothing Ring Maps, Proposition \ref{smoothing-proposition-lift-smooth}.
\begin{lemma}
\label{lemma-existence-lci}
If $A \to B$ is a local complete intersection ring map, then
there exists a solution to (\ref{equation-to-solve}).
\end{lemma}
\begin{proof}
Write $B = A[x_1, \ldots, x_n]/J$. Let $J' \subset A'[x_1, \ldots, x_n]$
be the inverse image of $J$. Denote $I[x_1, \ldots, x_n]$ the
kernel of $A'[x_1, \ldots, x_n] \to A[x_1, \ldots, x_n]$.
By More on Algebra, Lemma
\ref{more-algebra-lemma-conormal-sequence-H1-regular-ideal} we have
$I[x_1, \ldots, x_n] \cap (J')^2 = J'I[x_1, \ldots, x_n] =
JI[x_1, \ldots, x_n]$. Hence we obtain a short exact sequence
$$
0 \to I \otimes_A B \to J'/(J')^2 \to J/J^2 \to 0
$$
Since $J/J^2$ is projective (More on Algebra, Lemma
\ref{more-algebra-lemma-quasi-regular-ideal-finite-projective})
we can choose a splitting of this sequence
$$
J'/(J')^2 = I \otimes_A B \oplus J/J^2
$$
Let $(J')^2 \subset J'' \subset J'$ be the elements which map to the
second summand in the decomposition above. Then
$$
0 \to I \otimes_A B \to A'[x_1, \ldots, x_n]/J'' \to B \to 0
$$
is a solution to (\ref{equation-to-solve}) with $N = I \otimes_A B$.
The general case is obtained by doing a pushout along the given
map $I \otimes_A B \to N$.
\end{proof}
\begin{lemma}
\label{lemma-choices}
If there exists a solution to (\ref{equation-to-solve}), then the set of
isomorphism classes of solutions is principal homogeneous under
$\text{Ext}^1_B(\NL_{B/A}, N)$.
\end{lemma}
\begin{proof}
We observe right away that given two solutions $B'_1$ and $B'_2$
to (\ref{equation-to-solve}) we obtain by Lemma \ref{lemma-huge-diagram} an
obstruction element $o(B'_1, B'_2) \in \text{Ext}^1_B(\NL_{B/A}, N)$
to the existence of a map $B'_1 \to B'_2$. Clearly, this element
is the obstruction to the existence of an isomorphism, hence separates
the isomorphism classes. To finish the proof it therefore suffices to
show that given a solution $B'$ and an element
$\xi \in \text{Ext}^1_B(\NL_{B/A}, N)$
we can find a second solution $B'_\xi$ such that
$o(B', B'_\xi) = \xi$.
\medskip\noindent
Let $E = B$ viewed as a set. Consider the surjection $A[E] \to B$ with kernel
$J$ used to define the naive cotangent complex by the formula
$$
\NL_{B/A} = (J/J^2 \to \Omega_{A[E]/A} \otimes_{A[E]} B)
$$
in Algebra, Section \ref{algebra-section-netherlander}.
Since $\Omega_{A[E]/A} \otimes B$ is a free $B$-module we have
$$
\text{Ext}^1_B(\NL_{B/A}, N) =
\frac{\Hom_B(J/J^2, N)}
{\Hom_B(\Omega_{A[E]/A} \otimes B, N)}
$$
Thus we may represent $\xi$ as the class of a morphism $\delta : J/J^2 \to N$.
\medskip\noindent
For every $e \in E$ denote $x_e \in A[E]$ the corresponding variable.
Choose a lift $y_e \in B'$ of the image of $x_e$ in $B$.
These choices determine an $A'$-algebra map $\varphi : A'[E] \to B'$.
Let $J' = \Ker(A'[E] \to B)$. Observe that $\varphi$ induces a map
$\varphi|_{J'} : J' \to N$ and that $B'$ is the pushout, as in the following
diagram
$$
\xymatrix{
0 \ar[r] & N \ar[r] & B' \ar[r] & B \ar[r] & 0 \\
0 \ar[r] & J' \ar[u]^{\varphi|_{J'}} \ar[r] & A'[E] \ar[u] \ar[r] &
B \ar[u]_{=} \ar[r] & 0
}
$$
Let $\psi : J' \to N$ be the sum of the map $\varphi|_{J'}$ and the
composition
$$
J' \to J'/(J')^2 \to J/J^2 \xrightarrow{\delta} N.
$$
Then the pushout along $\psi$ is an other ring extension $B'_\xi$
fitting into a diagram as above. A calculation shows that
$o(B', B'_\xi) = \xi$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-extensions-of-rings}
Let $A$ be a ring and let $I$ be an $A$-module.
\begin{enumerate}
\item The set of extensions of rings $0 \to I \to A' \to A \to 0$
where $I$ is an ideal of square zero is canonically bijective to
$\text{Ext}^1_A(\NL_{A/\mathbf{Z}}, I)$.
\item Given a ring map $A \to B$, a $B$-module $N$, an $A$-module
map $c : I \to N$, and given extensions of rings with square zero kernels:
\begin{enumerate}
\item[(a)] $0 \to I \to A' \to A \to 0$ corresponding to
$\alpha \in \text{Ext}^1_A(\NL_{A/\mathbf{Z}}, I)$, and
\item[(b)] $0 \to N \to B' \to B \to 0$ corresponding to
$\beta \in \text{Ext}^1_B(\NL_{B/\mathbf{Z}}, N)$
\end{enumerate}
then there is a map $A' \to B'$ fitting into a diagram
(\ref{equation-to-solve}) if and only if $\beta$ and $\alpha$
map to the same element of
$\text{Ext}^1_A(\NL_{A/\mathbf{Z}}, N)$.
\end{enumerate}
\end{lemma}
\begin{proof}
To prove this we apply the previous results where we work over
$0 \to 0 \to \mathbf{Z} \to \mathbf{Z} \to 0$, in order words,
we work over the extension of $\mathbf{Z}$ by $0$.
Part (1) follows from Lemma \ref{lemma-choices}
and the fact that there exists a solution, namely $I \oplus A$.
Part (2) follows from Lemma \ref{lemma-huge-diagram}
and a compatibility between the constructions in the proofs
of Lemmas \ref{lemma-choices} and \ref{lemma-huge-diagram}
whose statement and proof we omit.
\end{proof}
\section{Thickenings of ringed spaces}
\label{section-thickenings-spaces}
\noindent
In the following few sections we will use the following notions:
\begin{enumerate}
\item A sheaf of ideals $\mathcal{I} \subset \mathcal{O}_{X'}$ on
a ringed space $(X', \mathcal{O}_{X'})$ is {\it locally nilpotent}
if any local section of $\mathcal{I}$ is locally nilpotent.
Compare with Algebra, Item \ref{algebra-item-ideal-locally-nilpotent}.
\item A {\it thickening} of ringed spaces is a morphism
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ of ringed spaces
such that
\begin{enumerate}
\item $i$ induces a homeomorphism $X \to X'$,
\item the map $i^\sharp : \mathcal{O}_{X'} \to i_*\mathcal{O}_X$
is surjective, and
\item the kernel of $i^\sharp$ is a locally nilpotent sheaf of ideals.
\end{enumerate}
\item A {\it first order thickening} of ringed spaces is a thickening
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ of ringed spaces
such that $\Ker(i^\sharp)$ has square zero.
\item It is clear how to define {\it morphisms of thickenings},
{\it morphisms of thickenings over a base ringed space}, etc.
\end{enumerate}
If $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ is a thickening
of ringed spaces then we identify the underlying topological spaces
and think of $\mathcal{O}_X$, $\mathcal{O}_{X'}$, and
$\mathcal{I} = \Ker(i^\sharp)$ as sheaves on $X = X'$. We obtain
a short exact sequence
$$
0 \to \mathcal{I} \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0
$$
of $\mathcal{O}_{X'}$-modules. By
Modules, Lemma \ref{modules-lemma-i-star-equivalence}
the category of $\mathcal{O}_X$-modules is equivalent to the category
of $\mathcal{O}_{X'}$-modules annihilated by $\mathcal{I}$. In particular,
if $i$ is a first order thickening, then
$\mathcal{I}$ is a $\mathcal{O}_X$-module.
\begin{situation}
\label{situation-morphism-thickenings}
A morphism of thickenings $(f, f')$ is given by a commutative diagram
\begin{equation}
\label{equation-morphism-thickenings}
\vcenter{
\xymatrix{
(X, \mathcal{O}_X) \ar[r]_i \ar[d]_f & (X', \mathcal{O}_{X'}) \ar[d]^{f'} \\
(S, \mathcal{O}_S) \ar[r]^t & (S', \mathcal{O}_{S'})
}
}
\end{equation}
of ringed spaces whose horizontal arrows are thickenings. In this
situation we set
$\mathcal{I} = \Ker(i^\sharp) \subset \mathcal{O}_{X'}$ and
$\mathcal{J} = \Ker(t^\sharp) \subset \mathcal{O}_{S'}$.
As $f = f'$ on underlying topological spaces we will identify
the (topological) pullback functors $f^{-1}$ and $(f')^{-1}$.
Observe that $(f')^\sharp : f^{-1}\mathcal{O}_{S'} \to \mathcal{O}_{X'}$
induces in particular a map $f^{-1}\mathcal{J} \to \mathcal{I}$
and therefore a map of $\mathcal{O}_{X'}$-modules
$$
(f')^*\mathcal{J} \longrightarrow \mathcal{I}
$$
If $i$ and $t$ are first order thickenings, then
$(f')^*\mathcal{J} = f^*\mathcal{J}$ and the map above becomes a
map $f^*\mathcal{J} \to \mathcal{I}$.
\end{situation}
\begin{definition}
\label{definition-strict-morphism-thickenings}
In Situation \ref{situation-morphism-thickenings} we say that $(f, f')$ is a
{\it strict morphism of thickenings}
if the map $(f')^*\mathcal{J} \longrightarrow \mathcal{I}$ is surjective.
\end{definition}
\noindent
The following lemma in particular shows that a morphism
$(f, f') : (X \subset X') \to (S \subset S')$ of
thickenings of schemes is strict if and only if $X = S \times_{S'} X'$.
\begin{lemma}
\label{lemma-strict-morphism-thickenings}
In Situation \ref{situation-morphism-thickenings} the morphism $(f, f')$
is a strict morphism of thickenings if and only if
(\ref{equation-morphism-thickenings}) is cartesian in the category
of ringed spaces.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Modules on first order thickenings of ringed spaces}
\label{section-modules-thickenings}
\noindent
In this section we discuss some preliminaries to the deformation theory
of modules. Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$
be a first order thickening of ringed spaces. We will freely use the notation
introduced in Section \ref{section-thickenings-spaces}, in particular we will
identify the underlying topological spaces.
In this section we consider short exact sequences
\begin{equation}
\label{equation-extension}
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0
\end{equation}
of $\mathcal{O}_{X'}$-modules, where $\mathcal{F}$, $\mathcal{K}$ are
$\mathcal{O}_X$-modules and $\mathcal{F}'$ is an $\mathcal{O}_{X'}$-module.
In this situation we have a canonical $\mathcal{O}_X$-module map
$$
c_{\mathcal{F}'} :
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}
\longrightarrow
\mathcal{K}
$$
where $\mathcal{I} = \Ker(i^\sharp)$.
Namely, given local sections $f$ of $\mathcal{I}$ and $s$
of $\mathcal{F}$ we set $c_{\mathcal{F}'}(f \otimes s) = fs'$
where $s'$ is a local section of $\mathcal{F}'$ lifting $s$.
\begin{lemma}
\label{lemma-inf-map}
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$
be a first order thickening of ringed spaces. Assume given
extensions
$$
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0
\quad\text{and}\quad
0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0
$$
as in (\ref{equation-extension})
and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and
$\psi : \mathcal{K} \to \mathcal{L}$.
\begin{enumerate}
\item If there exists an $\mathcal{O}_{X'}$-module
map $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$
and $\psi$, then the diagram
$$
\xymatrix{
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi} &
\mathcal{K} \ar[d]^\psi \\
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{G}
\ar[r]^-{c_{\mathcal{G}'}} &
\mathcal{L}
}
$$
is commutative.
\item The set of $\mathcal{O}_{X'}$-module
maps $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$
and $\psi$ is, if nonempty, a principal homogeneous space under
$\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L})$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) is immediate from the description of the maps.
For (2), if $\varphi'$ and $\varphi''$ are two maps
$\mathcal{F}' \to \mathcal{G}'$ compatible with $\varphi$
and $\psi$, then $\varphi' - \varphi''$ factors as
$$
\mathcal{F}' \to \mathcal{F} \to \mathcal{L} \to \mathcal{G}'
$$
The map in the middle comes from a unique element of
$\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L})$ by
Modules, Lemma \ref{modules-lemma-i-star-equivalence}.
Conversely, given an element $\alpha$ of this group we can add the
composition (as displayed above with $\alpha$ in the middle)
to $\varphi'$. Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-inf-obs-map}
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$
be a first order thickening of ringed spaces. Assume given
extensions
$$
0 \to \mathcal{K} \to \mathcal{F}' \to \mathcal{F} \to 0
\quad\text{and}\quad
0 \to \mathcal{L} \to \mathcal{G}' \to \mathcal{G} \to 0
$$
as in (\ref{equation-extension})
and maps $\varphi : \mathcal{F} \to \mathcal{G}$ and
$\psi : \mathcal{K} \to \mathcal{L}$. Assume the diagram
$$
\xymatrix{
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]_-{c_{\mathcal{F}'}} \ar[d]_{1 \otimes \varphi} &
\mathcal{K} \ar[d]^\psi \\
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{G}
\ar[r]^-{c_{\mathcal{G}'}} &
\mathcal{L}
}
$$
is commutative. Then there exists an element
$$
o(\varphi, \psi) \in
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L})
$$
whose vanishing is a necessary and sufficient condition for the existence
of a map $\varphi' : \mathcal{F}' \to \mathcal{G}'$ compatible with
$\varphi$ and $\psi$.
\end{lemma}
\begin{proof}
We can construct explicitly an extension
$$
0 \to \mathcal{L} \to \mathcal{H} \to \mathcal{F} \to 0
$$
by taking $\mathcal{H}$ to be the cohomology of the complex
$$
\mathcal{K}
\xrightarrow{1, - \psi}
\mathcal{F}' \oplus \mathcal{G}' \xrightarrow{\varphi, 1}
\mathcal{G}
$$
in the middle (with obvious notation). A calculation with local sections
using the assumption that the diagram of the lemma commutes
shows that $\mathcal{H}$ is annihilated by $\mathcal{I}$. Hence
$\mathcal{H}$ defines a class in
$$
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{L})
\subset
\text{Ext}^1_{\mathcal{O}_{X'}}(\mathcal{F}, \mathcal{L})
$$
Finally, the class of $\mathcal{H}$ is the difference of the pushout
of the extension $\mathcal{F}'$ via $\psi$ and the pullback
of the extension $\mathcal{G}'$ via $\varphi$ (calculations omitted).
Thus the vanishing of the class of $\mathcal{H}$ is equivalent to the
existence of a commutative diagram
$$
\xymatrix{
0 \ar[r] &
\mathcal{K} \ar[r] \ar[d]_{\psi} &
\mathcal{F}' \ar[r] \ar[d]_{\varphi'} &
\mathcal{F} \ar[r] \ar[d]_\varphi & 0\\
0 \ar[r] &
\mathcal{L} \ar[r] &
\mathcal{G}' \ar[r] &
\mathcal{G} \ar[r] & 0
}
$$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-inf-ext}
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ be a first order
thickening of ringed spaces.
Assume given $\mathcal{O}_X$-modules $\mathcal{F}$, $\mathcal{K}$
and an $\mathcal{O}_X$-linear map
$c : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}$.
If there exists a sequence (\ref{equation-extension}) with
$c_{\mathcal{F}'} = c$ then the set of isomorphism classes of these
extensions is principal homogeneous under
$\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K})$.
\end{lemma}
\begin{proof}
Assume given extensions
$$
0 \to \mathcal{K} \to \mathcal{F}'_1 \to \mathcal{F} \to 0
\quad\text{and}\quad
0 \to \mathcal{K} \to \mathcal{F}'_2 \to \mathcal{F} \to 0
$$
with $c_{\mathcal{F}'_1} = c_{\mathcal{F}'_2} = c$. Then the difference
(in the extension group, see
Homology, Section \ref{homology-section-extensions})
is an extension
$$
0 \to \mathcal{K} \to \mathcal{E} \to \mathcal{F} \to 0
$$
where $\mathcal{E}$ is annihilated by $\mathcal{I}$ (local computation
omitted). Hence the sequence is an extension of $\mathcal{O}_X$-modules,
see Modules, Lemma \ref{modules-lemma-i-star-equivalence}.
Conversely, given such an extension $\mathcal{E}$ we can add the extension
$\mathcal{E}$ to the $\mathcal{O}_{X'}$-extension $\mathcal{F}'$ without
affecting the map $c_{\mathcal{F}'}$. Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-inf-obs-ext}
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$
be a first order thickening of ringed spaces. Assume given
$\mathcal{O}_X$-modules $\mathcal{F}$, $\mathcal{K}$
and an $\mathcal{O}_X$-linear map
$c : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}$.
Then there exists an element
$$
o(\mathcal{F}, \mathcal{K}, c) \in
\text{Ext}^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K})
$$
whose vanishing is a necessary and sufficient condition for the existence
of a sequence (\ref{equation-extension}) with $c_{\mathcal{F}'} = c$.
\end{lemma}
\begin{proof}
We first show that if $\mathcal{K}$ is an injective $\mathcal{O}_X$-module,
then there does exist a sequence (\ref{equation-extension}) with
$c_{\mathcal{F}'} = c$. To do this, choose a flat
$\mathcal{O}_{X'}$-module $\mathcal{H}'$ and a surjection
$\mathcal{H}' \to \mathcal{F}$
(Modules, Lemma \ref{modules-lemma-module-quotient-flat}).
Let $\mathcal{J} \subset \mathcal{H}'$ be the kernel. Since $\mathcal{H}'$
is flat we have
$$
\mathcal{I} \otimes_{\mathcal{O}_{X'}} \mathcal{H}' =
\mathcal{I}\mathcal{H}'
\subset \mathcal{J} \subset \mathcal{H}'
$$
Observe that the map
$$
\mathcal{I}\mathcal{H}' =
\mathcal{I} \otimes_{\mathcal{O}_{X'}} \mathcal{H}'
\longrightarrow
\mathcal{I} \otimes_{\mathcal{O}_{X'}} \mathcal{F} =
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F}
$$
annihilates $\mathcal{I}\mathcal{J}$. Namely, if $f$ is a local section
of $\mathcal{I}$ and $s$ is a local section of $\mathcal{H}$, then
$fs$ is mapped to $f \otimes \overline{s}$ where $\overline{s}$ is
the image of $s$ in $\mathcal{F}$. Thus we obtain
$$
\xymatrix{
\mathcal{I}\mathcal{H}'/\mathcal{I}\mathcal{J}
\ar@{^{(}->}[r] \ar[d] &
\mathcal{J}/\mathcal{I}\mathcal{J} \ar@{..>}[d]_\gamma \\
\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \ar[r]^-c &
\mathcal{K}
}
$$
a diagram of $\mathcal{O}_X$-modules. If $\mathcal{K}$ is injective
as an $\mathcal{O}_X$-module, then we obtain the dotted arrow.
Denote $\gamma' : \mathcal{J} \to \mathcal{K}$ the composition
of $\gamma$ with $\mathcal{J} \to \mathcal{J}/\mathcal{I}\mathcal{J}$.
A local calculation shows the pushout
$$
\xymatrix{
0 \ar[r] &
\mathcal{J} \ar[r] \ar[d]_{\gamma'} &
\mathcal{H}' \ar[r] \ar[d] &
\mathcal{F} \ar[r] \ar@{=}[d] &
0 \\
0 \ar[r] &
\mathcal{K} \ar[r] &
\mathcal{F}' \ar[r] &
\mathcal{F} \ar[r] &
0
}
$$
is a solution to the problem posed by the lemma.
\medskip\noindent
General case. Choose an embedding $\mathcal{K} \subset \mathcal{K}'$
with $\mathcal{K}'$ an injective $\mathcal{O}_X$-module. Let $\mathcal{Q}$
be the quotient, so that we have an exact sequence
$$
0 \to \mathcal{K} \to \mathcal{K}' \to \mathcal{Q} \to 0
$$
Denote
$c' : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}'$
be the composition. By the paragraph above there exists a sequence
$$
0 \to \mathcal{K}' \to \mathcal{E}' \to \mathcal{F} \to 0
$$
as in (\ref{equation-extension}) with $c_{\mathcal{E}'} = c'$.
Note that $c'$ composed with the map $\mathcal{K}' \to \mathcal{Q}$
is zero, hence the pushout of $\mathcal{E}'$ by
$\mathcal{K}' \to \mathcal{Q}$ is an extension
$$
0 \to \mathcal{Q} \to \mathcal{D}' \to \mathcal{F} \to 0
$$
as in (\ref{equation-extension}) with $c_{\mathcal{D}'} = 0$.
This means exactly that $\mathcal{D}'$ is annihilated by
$\mathcal{I}$, in other words, the $\mathcal{D}'$ is an extension
of $\mathcal{O}_X$-modules, i.e., defines an element
$$
o(\mathcal{F}, \mathcal{K}, c) \in
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{Q}) =
\text{Ext}^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K})
$$
(the equality holds by the long exact cohomology sequence associated
to the exact sequence above and the vanishing of higher ext groups
into the injective module $\mathcal{K}'$). If
$o(\mathcal{F}, \mathcal{K}, c) = 0$, then we can choose a splitting
$s : \mathcal{F} \to \mathcal{D}'$ and we can set
$$
\mathcal{F}' = \Ker(\mathcal{E}' \to \mathcal{D}'/s(\mathcal{F}))
$$
so that we obtain the following diagram
$$
\xymatrix{
0 \ar[r] &
\mathcal{K} \ar[r] \ar[d] &
\mathcal{F}' \ar[r] \ar[d] &
\mathcal{F} \ar[r] \ar@{=}[d] &
0 \\
0 \ar[r] &
\mathcal{K}' \ar[r] &
\mathcal{E}' \ar[r] &
\mathcal{F} \ar[r] & 0
}
$$
with exact rows which shows that $c_{\mathcal{F}'} = c$. Conversely, if
$\mathcal{F}'$ exists, then the pushout of $\mathcal{F}'$ by the map
$\mathcal{K} \to \mathcal{K}'$ is isomorphic to $\mathcal{E}'$ by
Lemma \ref{lemma-inf-ext} and the vanishing of higher ext groups
into the injective module $\mathcal{K}'$. This gives a diagram
as above, which implies that $\mathcal{D}'$ is split as an extension, i.e.,
the class $o(\mathcal{F}, \mathcal{K}, c)$ is zero.
\end{proof}
\begin{remark}
\label{remark-trivial-thickening}
Let $(X, \mathcal{O}_X)$ be a ringed space. A first order thickening
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ is said
to be {\it trivial} if there exists a morphism of ringed spaces
$\pi : (X', \mathcal{O}_{X'}) \to (X, \mathcal{O}_X)$ which is a
left inverse to $i$. The choice of such a morphism
$\pi$ is called a {\it trivialization} of the first order thickening.
Given $\pi$ we obtain a splitting
\begin{equation}
\label{equation-splitting}
\mathcal{O}_{X'} = \mathcal{O}_X \oplus \mathcal{I}
\end{equation}
as sheaves of algebras on $X$ by using $\pi^\sharp$ to split the surjection
$\mathcal{O}_{X'} \to \mathcal{O}_X$. Conversely, such a splitting determines
a morphism $\pi$. The category of trivialized first order thickenings of
$(X, \mathcal{O}_X)$ is equivalent to the category of
$\mathcal{O}_X$-modules.
\end{remark}
\begin{remark}
\label{remark-trivial-extension}
Let $i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$
be a trivial first order thickening of ringed spaces
and let $\pi : (X', \mathcal{O}_{X'}) \to (X, \mathcal{O}_X)$
be a trivialization. Then given any triple
$(\mathcal{F}, \mathcal{K}, c)$ consisting of a pair of
$\mathcal{O}_X$-modules and a map
$c : \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{F} \to \mathcal{K}$
we may set
$$
\mathcal{F}'_{c, triv} = \mathcal{F} \oplus \mathcal{K}
$$
and use the splitting (\ref{equation-splitting}) associated to $\pi$
and the map $c$ to define the $\mathcal{O}_{X'}$-module structure
and obtain an extension (\ref{equation-extension}). We will call
$\mathcal{F}'_{c, triv}$ the {\it trivial extension} of $\mathcal{F}$
by $\mathcal{K}$ corresponding
to $c$ and the trivialization $\pi$. Given any extension
$\mathcal{F}'$ as in (\ref{equation-extension}) we can use
$\pi^\sharp : \mathcal{O}_X \to \mathcal{O}_{X'}$ to think of $\mathcal{F}'$
as an $\mathcal{O}_X$-module extension, hence a class $\xi_{\mathcal{F}'}$
in $\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K})$.
Lemma \ref{lemma-inf-ext} assures that
$\mathcal{F}' \mapsto \xi_{\mathcal{F}'}$
induces a bijection
$$
\left\{
\begin{matrix}
\text{isomorphism classes of extensions}\\
\mathcal{F}'\text{ as in (\ref{equation-extension}) with }c = c_{\mathcal{F}'}
\end{matrix}
\right\}
\longrightarrow
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K})
$$
Moreover, the trivial extension $\mathcal{F}'_{c, triv}$ maps to the zero class.
\end{remark}
\begin{remark}
\label{remark-extension-functorial}
Let $(X, \mathcal{O}_X)$ be a ringed space. Let
$(X, \mathcal{O}_X) \to (X'_i, \mathcal{O}_{X'_i})$, $i = 1, 2$
be first order thickenings with ideal sheaves $\mathcal{I}_i$.
Let $h : (X'_1, \mathcal{O}_{X'_1}) \to (X'_2, \mathcal{O}_{X'_2})$
be a morphism of first order thickenings of $(X, \mathcal{O}_X)$.
Picture
$$
\xymatrix{
& (X, \mathcal{O}_X) \ar[ld] \ar[rd] & \\
(X'_1, \mathcal{O}_{X'_1}) \ar[rr]^h & &
(X'_2, \mathcal{O}_{X'_2})
}
$$
Observe that $h^\sharp : \mathcal{O}_{X'_2} \to \mathcal{O}_{X'_1}$
in particular induces an $\mathcal{O}_X$-module map
$\mathcal{I}_2 \to \mathcal{I}_1$.
Let $\mathcal{F}$ be an
$\mathcal{O}_X$-module. Let $(\mathcal{K}_i, c_i)$, $i = 1, 2$ be a pair
consisting of an $\mathcal{O}_X$-module $\mathcal{K}_i$ and a map
$c_i : \mathcal{I}_i \otimes_{\mathcal{O}_X} \mathcal{F} \to
\mathcal{K}_i$. Assume furthermore given a map
of $\mathcal{O}_X$-modules $\mathcal{K}_2 \to \mathcal{K}_1$
such that
$$
\xymatrix{
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]_-{c_2} \ar[d] &
\mathcal{K}_2 \ar[d] \\
\mathcal{I}_1 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]^-{c_1} &
\mathcal{K}_1
}
$$
is commutative. Then there is a canonical functoriality
$$
\left\{
\begin{matrix}
\mathcal{F}'_2\text{ as in (\ref{equation-extension}) with }\\
c_2 = c_{\mathcal{F}'_2}\text{ and }\mathcal{K} = \mathcal{K}_2
\end{matrix}
\right\}
\longrightarrow
\left\{
\begin{matrix}
\mathcal{F}'_1\text{ as in (\ref{equation-extension}) with }\\
c_1 = c_{\mathcal{F}'_1}\text{ and }\mathcal{K} = \mathcal{K}_1
\end{matrix}
\right\}
$$
Namely, thinking of all sheaves $\mathcal{O}_X$, $\mathcal{O}_{X'_i}$,
$\mathcal{F}$, $\mathcal{K}_i$, etc as sheaves on $X$, we set
given $\mathcal{F}'_2$ the sheaf $\mathcal{F}'_1$ equal to the
pushout, i.e., fitting into the following diagram of extensions
$$
\xymatrix{
0 \ar[r] &
\mathcal{K}_2 \ar[r] \ar[d] &
\mathcal{F}'_2 \ar[r] \ar[d] &
\mathcal{F} \ar@{=}[d] \ar[r] & 0 \\
0 \ar[r] &
\mathcal{K}_1 \ar[r] &
\mathcal{F}'_1 \ar[r] &
\mathcal{F} \ar[r] & 0
}
$$
We omit the construction of the $\mathcal{O}_{X'_1}$-module structure
on the pushout (this uses the commutativity of the diagram
involving $c_1$ and $c_2$).
\end{remark}
\begin{remark}
\label{remark-trivial-extension-functorial}
Let $(X, \mathcal{O}_X)$, $(X, \mathcal{O}_X) \to (X'_i, \mathcal{O}_{X'_i})$,
$\mathcal{I}_i$, and
$h : (X'_1, \mathcal{O}_{X'_1}) \to (X'_2, \mathcal{O}_{X'_2})$
be as in Remark \ref{remark-extension-functorial}. Assume that we are
given given trivializations $\pi_i : X'_i \to X$ such that
$\pi_1 = h \circ \pi_2$. In other words, assume $h$ is a morphism
of trivialized first order thickening of $(X, \mathcal{O}_X)$. Let
$(\mathcal{K}_i, c_i)$, $i = 1, 2$ be a pair consisting of an
$\mathcal{O}_X$-module $\mathcal{K}_i$ and a map
$c_i : \mathcal{I}_i \otimes_{\mathcal{O}_X} \mathcal{F} \to
\mathcal{K}_i$. Assume furthermore given a map
of $\mathcal{O}_X$-modules $\mathcal{K}_2 \to \mathcal{K}_1$
such that
$$
\xymatrix{
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]_-{c_2} \ar[d] &
\mathcal{K}_2 \ar[d] \\
\mathcal{I}_1 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]^-{c_1} &
\mathcal{K}_1
}
$$
is commutative. In this situation the construction of
Remark \ref{remark-trivial-extension} induces
a commutative diagram
$$
\xymatrix{
\{\mathcal{F}'_2\text{ as in (\ref{equation-extension}) with }
c_2 = c_{\mathcal{F}'_2}\text{ and }\mathcal{K} = \mathcal{K}_2\}
\ar[d] \ar[rr] & &
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_2) \ar[d] \\
\{\mathcal{F}'_1\text{ as in (\ref{equation-extension}) with }
c_1 = c_{\mathcal{F}'_1}\text{ and }\mathcal{K} = \mathcal{K}_1\}
\ar[rr] & &
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_1)
}
$$
where the vertical map on the right is given by functoriality of $\text{Ext}$
and the map $\mathcal{K}_2 \to \mathcal{K}_1$ and the vertical map on the left
is the one from Remark \ref{remark-extension-functorial}.
\end{remark}
\begin{remark}
\label{remark-short-exact-sequence-thickenings}
Let $(X, \mathcal{O}_X)$ be a ringed space. We define a sequence of morphisms
of first order thickenings
$$
(X'_1, \mathcal{O}_{X'_1}) \to
(X'_2, \mathcal{O}_{X'_2}) \to
(X'_3, \mathcal{O}_{X'_3})
$$
of $(X, \mathcal{O}_X)$ to be a {\it complex}
if the corresponding maps between
the ideal sheaves $\mathcal{I}_i$
give a complex of $\mathcal{O}_X$-modules
$\mathcal{I}_3 \to \mathcal{I}_2 \to \mathcal{I}_1$
(i.e., the composition is zero). In this case the composition
$(X'_1, \mathcal{O}_{X'_1}) \to (X_3', \mathcal{O}_{X'_3})$ factors through
$(X, \mathcal{O}_X) \to (X'_3, \mathcal{O}_{X'_3})$, i.e.,
the first order thickening $(X'_1, \mathcal{O}_{X'_1})$ of
$(X, \mathcal{O}_X)$ is trivial and comes with
a canonical trivialization
$\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_X)$.
\medskip\noindent
We say a sequence of morphisms of first order thickenings
$$
(X'_1, \mathcal{O}_{X'_1}) \to
(X'_2, \mathcal{O}_{X'_2}) \to
(X'_3, \mathcal{O}_{X'_3})
$$
of $(X, \mathcal{O}_X)$ is {\it a short exact sequence} if the
corresponding maps between ideal sheaves is a short exact sequence
$$
0 \to \mathcal{I}_3 \to \mathcal{I}_2 \to \mathcal{I}_1 \to 0
$$
of $\mathcal{O}_X$-modules.
\end{remark}
\begin{remark}
\label{remark-complex-thickenings-and-ses-modules}
Let $(X, \mathcal{O}_X)$ be a ringed space. Let $\mathcal{F}$ be an
$\mathcal{O}_X$-module. Let
$$
(X'_1, \mathcal{O}_{X'_1}) \to
(X'_2, \mathcal{O}_{X'_2}) \to
(X'_3, \mathcal{O}_{X'_3})
$$
be a complex first order thickenings of $(X, \mathcal{O}_X)$, see
Remark \ref{remark-short-exact-sequence-thickenings}.
Let $(\mathcal{K}_i, c_i)$, $i = 1, 2, 3$ be pairs consisting of
an $\mathcal{O}_X$-module $\mathcal{K}_i$ and a map
$c_i : \mathcal{I}_i \otimes_{\mathcal{O}_X} \mathcal{F} \to
\mathcal{K}_i$. Assume given a short exact sequence
of $\mathcal{O}_X$-modules
$$
0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0
$$
such that
$$
\vcenter{
\xymatrix{
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]_-{c_2} \ar[d] &
\mathcal{K}_2 \ar[d] \\
\mathcal{I}_1 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]^-{c_1} &
\mathcal{K}_1
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
\mathcal{I}_3 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]_-{c_3} \ar[d] &
\mathcal{K}_3 \ar[d] \\
\mathcal{I}_2 \otimes_{\mathcal{O}_X} \mathcal{F}
\ar[r]^-{c_2} &
\mathcal{K}_2
}
}
$$
are commutative. Finally, assume given an extension
$$
0 \to \mathcal{K}_2 \to \mathcal{F}'_2 \to \mathcal{F} \to 0
$$
as in (\ref{equation-extension}) with $\mathcal{K} = \mathcal{K}_2$
of $\mathcal{O}_{X'_2}$-modules with $c_{\mathcal{F}'_2} = c_2$.
In this situation we can apply the functoriality of
Remark \ref{remark-extension-functorial} to obtain an extension
$\mathcal{F}'_1$ on $X'_1$ (we'll describe $\mathcal{F}'_1$
in this special case below). By
Remark \ref{remark-trivial-extension}
using the canonical splitting
$\pi : (X'_1, \mathcal{O}_{X'_1}) \to (X, \mathcal{O}_X)$ of
Remark \ref{remark-short-exact-sequence-thickenings}
we obtain
$\xi_{\mathcal{F}'_1} \in
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_1)$.
Finally, we have the obstruction
$$
o(\mathcal{F}, \mathcal{K}_3, c_3) \in
\text{Ext}^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_3)
$$
see Lemma \ref{lemma-inf-obs-ext}.
In this situation we {\bf claim} that the canonical map
$$
\partial :
\text{Ext}^1_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_1)
\longrightarrow
\text{Ext}^2_{\mathcal{O}_X}(\mathcal{F}, \mathcal{K}_3)
$$
coming from the short exact sequence
$0 \to \mathcal{K}_3 \to \mathcal{K}_2 \to \mathcal{K}_1 \to 0$