forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
algebraic.tex
2665 lines (2378 loc) · 95.2 KB
/
algebraic.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Algebraic Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This is where we define algebraic stacks and make some very elementary
observations. The general philosophy will be to have no separation
conditions whatsoever and add those conditions necessary to make lemmas,
propositions, theorems true/provable. Thus the notions discussed here
differ slightly from those in other places in the literature, e.g.,
\cite{LM-B}.
\medskip\noindent
This chapter is not an introduction to algebraic stacks.
For an informal discussion of algebraic stacks, please take a look at
Introducing Algebraic Stacks, Section
\ref{stacks-introduction-section-introduction}.
\section{Conventions}
\label{section-conventions}
\noindent
The conventions we use in this chapter are the same as those in the
chapter on algebraic spaces. For convenience we repeat them here.
\medskip\noindent
We work in a suitable big fppf site $\Sch_{fppf}$
as in Topologies, Definition \ref{topologies-definition-big-fppf-site}.
So, if not explicitly stated otherwise all schemes will be objects
of $\Sch_{fppf}$. We discuss what changes if you change the big
fppf site in
Section \ref{section-change-big-site}.
\medskip\noindent
We will always work relative to a base $S$ contained in $\Sch_{fppf}$.
And we will then work with the big fppf site $(\Sch/S)_{fppf}$, see
Topologies, Definition \ref{topologies-definition-big-small-fppf}.
The absolute case can be recovered by taking
$S = \Spec(\mathbf{Z})$.
\medskip\noindent
If $U, T$ are schemes over $S$, then we denote
$U(T)$ for the set of $T$-valued points {\it over} $S$.
In a formula: $U(T) = \Mor_S(T, U)$.
\medskip\noindent
Note that any fpqc covering is a universal effective
epimorphism, see
Descent, Lemma \ref{descent-lemma-fpqc-universal-effective-epimorphisms}.
Hence the topology on $\Sch_{fppf}$
is weaker than the canonical topology and all representable presheaves
are sheaves.
\section{Notation}
\label{section-notation}
\noindent
We use the letters $S, T, U, V, X, Y$ to indicate schemes.
We use the letters $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ to indicate
categories (fibred, fibred in groupoids, stacks, ...)
over $(\Sch/S)_{fppf}$. We use small case letters
$f$, $g$ for functors such as $f : \mathcal{X} \to \mathcal{Y}$
over $(\Sch/S)_{fppf}$.
We use capital $F$, $G$, $H$ for algebraic spaces over $S$, and more
generally for presheaves of sets on $(\Sch/S)_{fppf}$.
(In future chapters we will revert to using also $X$, $Y$, etc
for algebraic spaces.)
\medskip\noindent
The reason for these choices is that we want to clearly distinguish between
the different types of objects in this chapter, to build the foundations.
\section{Representable categories fibred in groupoids}
\label{section-representable}
\noindent
Let $S$ be a scheme contained in $\Sch_{fppf}$.
The basic object of study in this chapter will be a
category fibred in groupoids
$p : \mathcal{X} \to (\Sch/S)_{fppf}$, see
Categories, Definition \ref{categories-definition-fibred-groupoids}.
We will often simply say ``let $\mathcal{X}$ be a category fibred
in groupoids over $(\Sch/S)_{fppf}$'' to indicate
this situation. A $1$-morphism $\mathcal{X} \to \mathcal{Y}$ of categories
in groupoids over $(\Sch/S)_{fppf}$ will be a $1$-morphism
in the $2$-category of categories fibred in groupoids over
$(\Sch/S)_{fppf}$, see
Categories,
Definition \ref{categories-definition-categories-fibred-in-groupoids-over-C}.
It is simply a functor $\mathcal{X} \to \mathcal{Y}$ over
$(\Sch/S)_{fppf}$.
We recall this is really a $(2, 1)$-category and that all $2$-fibre products
exist.
\medskip\noindent
Let $\mathcal{X}$ be a category fibred in groupoids over
$(\Sch/S)_{fppf}$. Recall that $\mathcal{X}$
is said to be {\it representable} if there exists a
scheme $U \in \Ob((\Sch/S)_{fppf})$ and an
equivalence
$$
j : \mathcal{X} \longrightarrow (\Sch/U)_{fppf}
$$
of categories over $(\Sch/S)_{fppf}$, see
Categories,
Definition \ref{categories-definition-representable-fibred-category}.
We will sometimes say that $\mathcal{X}$ is
{\it representable by a scheme} to distinguish from the case
where $\mathcal{X}$ is representable by an algebraic space (see
below).
\medskip\noindent
If $\mathcal{X}, \mathcal{Y}$ are fibred in groupoids and
representable by $U, V$, then we have
\begin{equation}
\label{equation-morphisms-schemes}
\Mor_{\textit{Cat}/(\Sch/S)_{fppf}}(\mathcal{X}, \mathcal{Y})
\Big/
2\text{-isomorphism}
=
\Mor_{\Sch/S}(U, V)
\end{equation}
see
Categories,
Lemma \ref{categories-lemma-morphisms-representable-fibred-categories}.
More precisely, any $1$-morphism $\mathcal{X} \to \mathcal{Y}$
gives rise to a morphism $U \to V$. Conversely, given a morphism
of schemes $U \to V$ over $S$ there exists a $1$-morphism
$\phi : \mathcal{X} \to \mathcal{Y}$ which gives rise to $U \to V$
and which is unique up to unique $2$-isomorphism.
\section{The 2-Yoneda lemma}
\label{section-2-yoneda}
\noindent
Let $U \in \Ob((\Sch/S)_{fppf})$, and let $\mathcal{X}$ be a
category fibred in groupoids over $(\Sch/S)_{fppf}$.
We will frequently use the $2$-Yoneda lemma, see
Categories, Lemma \ref{categories-lemma-yoneda-2category}.
Technically it says that there is an equivalence of categories
$$
\Mor_{\textit{Cat}/(\Sch/S)_{fppf}}(
(\Sch/U)_{fppf}, \mathcal{X})
\longrightarrow
\mathcal{X}_U, \quad
f \longmapsto f(U/U).
$$
It says that $1$-morphisms $(\Sch/U)_{fppf} \to \mathcal{X}$
correspond to objects $x$ of the fibre category $\mathcal{X}_U$.
Namely, given a $1$-morphism $f : (\Sch/U)_{fppf} \to \mathcal{X}$
we obtain the object $x = f(U/U) \in \Ob(\mathcal{X}_U)$.
Conversely, given a choice of pullbacks for $\mathcal{X}$ as in
Categories,
Definition \ref{categories-definition-pullback-functor-fibred-category},
and an object $x$ of $\mathcal{X}_U$, we obtain a functor
$(\Sch/U)_{fppf} \to \mathcal{X}$ defined by the rule
$$
(\varphi : V \to U) \longmapsto \varphi^*x
$$
on objects. By abuse of notation we use
$x : (\Sch/U)_{fppf} \to \mathcal{X}$
to indicate this functor. It indeed has the property that $x(U/U) = x$
and moreover, given any other functor $f$ with $f(U/U) = x$ there exists
a unique $2$-isomorphism $x \to f$. In other words the functor $x$
is well determined by the object $x$ up to unique $2$-isomorphism.
\medskip\noindent
We will use this without further mention in the following.
\section{Representable morphisms of categories fibred in groupoids}
\label{section-representable-morphism}
\noindent
Let $\mathcal{X}$, $\mathcal{Y}$ be categories fibred in groupoids
over $(\Sch/S)_{fppf}$. Let $f : \mathcal{X} \to \mathcal{Y}$
be a {\it representable $1$-morphism}, see
Categories, Definition
\ref{categories-definition-representable-map-categories-fibred-in-groupoids}.
This means that for every $U \in \Ob((\Sch/S)_{fppf})$ and
any $y \in \Ob(\mathcal{Y}_U)$ the $2$-fibre product
$(\Sch/U)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$
is representable. Choose a representing object $V_y$ and an equivalence
$$
(\Sch/V_y)_{fppf}
\longrightarrow
(\Sch/U)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}.
$$
The projection
$(\Sch/V_y)_{fppf} \to
(\Sch/U)_{fppf} \times_\mathcal{Y} \mathcal{Y}
\to (\Sch/U)_{fppf}$
comes from a morphism of schemes $f_y : V_y \to U$, see
Section \ref{section-representable}. We represent this by the diagram
\begin{equation}
\label{equation-representable}
\vcenter{
\xymatrix{
V_y \ar@{~>}[r] \ar[d]_{f_y} &
(\Sch/V_y)_{fppf} \ar[d] \ar[r] &
\mathcal{X} \ar[d]^f \\
U \ar@{~>}[r] &
(\Sch/U)_{fppf} \ar[r]^-y &
\mathcal{Y}
}
}
\end{equation}
where the squiggly arrows represent the $2$-Yoneda embedding.
Here are some lemmas about this notion that work in great generality
(namely, they work for categories fibred in groupoids over any
base category which has fibre products).
\begin{lemma}
\label{lemma-morphism-schemes-gives-representable-transformation}
Let $S$, $X$, $Y$ be objects of $\Sch_{fppf}$.
Let $f : X \to Y$ be a morphism of schemes.
Then the $1$-morphism induced by $f$
$$
(\Sch/X)_{fppf} \longrightarrow (\Sch/Y)_{fppf}
$$
is a representable $1$-morphism.
\end{lemma}
\begin{proof}
This is formal and relies only on the fact that
the category $(\Sch/S)_{fppf}$ has fibre products.
\end{proof}
\begin{lemma}
\label{lemma-representable-morphism-equivalent}
Let $S$ be an object of $\Sch_{fppf}$.
Consider a $2$-commutative diagram
$$
\xymatrix{
\mathcal{X}' \ar[r] \ar[d]_{f'} & \mathcal{X} \ar[d]^f \\
\mathcal{Y}' \ar[r] & \mathcal{Y}
}
$$
of $1$-morphisms of categories fibred in groupoids over
$(\Sch/S)_{fppf}$.
Assume the horizontal arrows are equivalences.
Then $f$ is representable if and only if $f'$ is representable.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-composition-representable-transformations}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
be categories fibred in groupoids over $(\Sch/S)_{fppf}$
Let $f : \mathcal{X} \to \mathcal{Y}$, $g : \mathcal{Y} \to \mathcal{Z}$
be representable $1$-morphisms. Then
$$
g \circ f : \mathcal{X} \longrightarrow \mathcal{Z}
$$
is a representable $1$-morphism.
\end{lemma}
\begin{proof}
This is entirely formal and works in any category.
\end{proof}
\begin{lemma}
\label{lemma-base-change-representable-transformations}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
be categories fibred in groupoids over $(\Sch/S)_{fppf}$
Let $f : \mathcal{X} \to \mathcal{Y}$ be a representable $1$-morphism.
Let $g : \mathcal{Z} \to \mathcal{Y}$ be any $1$-morphism.
Consider the fibre product diagram
$$
\xymatrix{
\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X} \ar[r]_-{g'} \ar[d]_{f'} &
\mathcal{X} \ar[d]^f \\
\mathcal{Z} \ar[r]^g & \mathcal{Y}
}
$$
Then the base change $f'$ is a representable $1$-morphism.
\end{lemma}
\begin{proof}
This is entirely formal and works in any category.
\end{proof}
\begin{lemma}
\label{lemma-product-representable-transformations}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}_i, \mathcal{Y}_i$ be categories fibred in groupoids over
$(\Sch/S)_{fppf}$, $i = 1, 2$.
Let $f_i : \mathcal{X}_i \to \mathcal{Y}_i$, $i = 1, 2$
be representable $1$-morphisms.
Then
$$
f_1 \times f_2 :
\mathcal{X}_1 \times \mathcal{X}_2
\longrightarrow
\mathcal{Y}_1 \times \mathcal{Y}_2
$$
is a representable $1$-morphism.
\end{lemma}
\begin{proof}
Write $f_1 \times f_2$ as the composition
$\mathcal{X}_1 \times \mathcal{X}_2 \to
\mathcal{Y}_1 \times \mathcal{X}_2 \to
\mathcal{Y}_1 \times \mathcal{Y}_2$.
The first arrow is the base change of $f_1$ by the map
$\mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1$, and the second arrow
is the base change of $f_2$ by the map
$\mathcal{Y}_1 \times \mathcal{Y}_2 \to \mathcal{Y}_2$.
Hence this lemma is a formal
consequence of Lemmas \ref{lemma-composition-representable-transformations}
and \ref{lemma-base-change-representable-transformations}.
\end{proof}
\section{Split categories fibred in groupoids}
\label{section-split}
\noindent
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Recall that given a ``presheaf of groupoids''
$$
F : (\Sch/S)_{fppf}^{opp} \longrightarrow \textit{Groupoids}
$$
we get a category fibred in groupoids $\mathcal{S}_F$ over
$(\Sch/S)_{fppf}$, see
Categories, Example \ref{categories-example-functor-groupoids}.
Any category fibred in groupoids isomorphic (!) to one of these
is called a {\it split category fibred in groupoids}.
Any category fibred in groupoids is equivalent to a split one.
\medskip\noindent
If $F$ is a presheaf of sets then $\mathcal{S}_F$ is
fibred in sets, see
Categories,
Definition \ref{categories-definition-category-fibred-sets},
and
Categories, Example \ref{categories-example-presheaf}.
The rule $F \mapsto \mathcal{S}_F$ is in some sense fully faithful
on presheaves, see
Categories, Lemma \ref{categories-lemma-2-category-fibred-sets}.
If $F, G$ are presheaves, then
$$
\mathcal{S}_{F \times G}
=
\mathcal{S}_F \times_{(\Sch/S)_{fppf}} \mathcal{S}_G
$$
and if $F \to H$ and $G \to H$ are maps of presheaves of sets, then
$$
\mathcal{S}_{F \times_H G} =
\mathcal{S}_F \times_{\mathcal{S}_H} \mathcal{S}_G
$$
where the right hand sides are $2$-fibre products. This is immediate
from the definitions as the fibre categories of
$\mathcal{S}_F, \mathcal{S}_G, \mathcal{S}_H$ have only identity morphisms.
\medskip\noindent
An even more special case is where $F = h_X$ is a representable
presheaf. In this case we have
$\mathcal{S}_{h_X} = (\Sch/X)_{fppf}$, see
Categories,
Example \ref{categories-example-fibred-category-from-functor-of-points}.
\medskip\noindent
We will use the notation $\mathcal{S}_F$ without further mention in the
following.
\section{Categories fibred in groupoids representable by algebraic spaces}
\label{section-representable-by-algebraic-spaces}
\noindent
A slightly weaker notion than being representable is the notion of
being representable by algebraic spaces which we discuss in this section.
This discussion might have been avoided had we worked with some category
$\textit{Spaces}_{fppf}$ of algebraic spaces instead of the category
$\Sch_{fppf}$. However, it seems to us natural to consider the
category of schemes as the natural collection of ``test objects'' over
which the fibre categories of an algebraic stack are defined.
\medskip\noindent
In analogy with Categories, Definitions
\ref{categories-definition-representable-fibred-category}
we make the following definition.
\begin{definition}
\label{definition-representable-by-algebraic-space}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
A category fibred in groupoids $p : \mathcal{X} \to (\Sch/S)_{fppf}$
is called {\it representable by an algebraic space over $S$}
if there exists an algebraic space $F$ over $S$ and an equivalence
$j : \mathcal{X} \to \mathcal{S}_F$
of categories over $(\Sch/S)_{fppf}$.
\end{definition}
\noindent
We continue our abuse of notation in suppressing the equivalence $j$
whenever we encounter such a situation.
It follows formally from the above that if $\mathcal{X}$ is
representable (by a scheme), then it is representable by an
algebraic space. Here is the analogue of
Categories,
Lemma \ref{categories-lemma-characterize-representable-fibred-category}.
\begin{lemma}
\label{lemma-characterize-representable-by-space}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $p : \mathcal{X} \to (\Sch/S)_{fppf}$
be a category fibred in groupoids.
Then $\mathcal{X}$ is representable by an algebraic space over $S$
if and only if the following conditions are satisfied:
\begin{enumerate}
\item $\mathcal{X}$ is fibred in setoids\footnote{This means that
it is fibred in groupoids and objects in the fibre categories
have no nontrivial automorphisms, see Categories,
Definition \ref{categories-definition-category-fibred-sets}.}, and
\item the presheaf $U \mapsto \Ob(\mathcal{X}_U)/\!\!\cong$ is
an algebraic space.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted, but see Categories,
Lemma \ref{categories-lemma-characterize-representable-fibred-category}.
\end{proof}
\noindent
If $\mathcal{X}, \mathcal{Y}$ are fibred in groupoids and
representable by algebraic spaces $F, G$ over $S$, then we have
\begin{equation}
\label{equation-morphisms-spaces}
\Mor_{\textit{Cat}/(\Sch/S)_{fppf}}(\mathcal{X}, \mathcal{Y})
\Big/
2\text{-isomorphism}
=
\Mor_{\Sch/S}(F, G)
\end{equation}
see
Categories, Lemma \ref{categories-lemma-2-category-fibred-setoids}.
More precisely, any $1$-morphism $\mathcal{X} \to \mathcal{Y}$
gives rise to a morphism $F \to G$. Conversely, give a morphism
of sheaves $F \to G$ over $S$ there exists a $1$-morphism
$\phi : \mathcal{X} \to \mathcal{Y}$ which gives rise to $F \to G$
and which is unique up to unique $2$-isomorphism.
\section{Morphisms representable by algebraic spaces}
\label{section-morphisms-representable-by-algebraic-spaces}
\noindent
In analogy with Categories, Definition
\ref{categories-definition-representable-map-categories-fibred-in-groupoids}
we make the following definition.
\begin{definition}
\label{definition-representable-by-algebraic-spaces}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
A $1$-morphism $f : \mathcal{X} \to \mathcal{Y}$ of
categories fibred in groupoids over $(\Sch/S)_{fppf}$
is called {\it representable by algebraic spaces} if
for any $U \in \Ob((\Sch/S)_{fppf})$
and any $y : (\Sch/U)_{fppf} \to \mathcal{Y}$
the category fibred in groupoids
$$
(\Sch/U)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}
$$
over $(\Sch/U)_{fppf}$
is representable by an algebraic space over $U$.
\end{definition}
\noindent
Choose an algebraic space $F_y$ over $U$ which represents
$(\Sch/U)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$.
We may think of $F_y$ as an algebraic space over $S$
which comes equipped with a canonical morphism $f_y : F_y \to U$
over $S$, see
Spaces, Section \ref{spaces-section-change-base-scheme}.
Here is the diagram
\begin{equation}
\label{equation-representable-by-algebraic-spaces}
\vcenter{
\xymatrix{
F_y \ar[d]_{f_y} &
(\Sch/U)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}
\ar@{~>}[l] \ar[d]_{\text{pr}_0} \ar[r]_-{\text{pr}_1} &
\mathcal{X} \ar[d]^f \\
U &
(\Sch/U)_{fppf} \ar@{~>}[l] \ar[r]^-y &
\mathcal{Y}
}
}
\end{equation}
where the squiggly arrows represent the construction which associates
to a stack fibred in setoids its associated sheaf of isomorphism classes
of objects. The right square is
$2$-commutative, and is a $2$-fibre product square.
\medskip\noindent
Here is the analogue of Categories,
Lemma \ref{categories-lemma-criterion-representable-map-stack-in-groupoids}.
\begin{lemma}
\label{lemma-criterion-map-representable-spaces-fibred-in-groupoids}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
The following are necessary and sufficient conditions for
$f$ to be representable by algebraic spaces:
\begin{enumerate}
\item for each scheme $U/S$ the
functor $f_U : \mathcal{X}_U \longrightarrow \mathcal{Y}_U$
between fibre categories is faithful, and
\item for each $U$ and each $y \in \Ob(\mathcal{Y}_U)$ the presheaf
$$
(h : V \to U)
\longmapsto
\{(x, \phi) \mid x \in \Ob(\mathcal{X}_V), \phi : h^*y \to f(x)\}/\cong
$$
is an algebraic space over $U$.
\end{enumerate}
Here we have made a choice of pullbacks for $\mathcal{Y}$.
\end{lemma}
\begin{proof}
This follows from the description of fibre categories of the $2$-fibre products
$(\Sch/U)_{fppf} \times_{y, \mathcal{Y}} \mathcal{X}$ in
Categories, Lemma \ref{categories-lemma-identify-fibre-product}
combined with
Lemma \ref{lemma-characterize-representable-by-space}.
\end{proof}
\noindent
Here are some lemmas about this notion that work in great generality.
\begin{lemma}
\label{lemma-representable-by-spaces-morphism-equivalent}
Let $S$ be an object of $\Sch_{fppf}$.
Consider a $2$-commutative diagram
$$
\xymatrix{
\mathcal{X}' \ar[r] \ar[d]_{f'} & \mathcal{X} \ar[d]^f \\
\mathcal{Y}' \ar[r] & \mathcal{Y}
}
$$
of $1$-morphisms of categories fibred in groupoids over
$(\Sch/S)_{fppf}$.
Assume the horizontal arrows are equivalences.
Then $f$ is representable by algebraic spaces
if and only if $f'$ is representable by algebraic spaces.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-morphism-spaces-gives-representable-by-spaces}
Let $S$ be an object of $\Sch_{fppf}$.
Let $f : \mathcal{X} \to \mathcal{Y}$
be a $1$-morphism of categories fibred in groupoids over $S$.
If $\mathcal{X}$ and $\mathcal{Y}$ are representable by
algebraic spaces over $S$, then the $1$-morphism $f$
is representable by algebraic spaces.
\end{lemma}
\begin{proof}
Omitted. This relies only on the fact that
the category of algebraic spaces over $S$ has fibre products,
see Spaces, Lemma \ref{spaces-lemma-fibre-product-spaces}.
\end{proof}
\begin{lemma}
\label{lemma-map-presheaves-representable-by-algebraic-spaces}
Let $S$ be an object of $\Sch_{fppf}$.
Let $a : F \to G$ be a map of presheaves of sets on $(\Sch/S)_{fppf}$.
Denote $a' : \mathcal{S}_F \to \mathcal{S}_G$ the associated
map of categories fibred in sets.
Then $a$ is representable by algebraic spaces (see
Bootstrap,
Definition \ref{bootstrap-definition-morphism-representable-by-spaces})
if and only if $a'$ is representable by algebraic spaces.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-map-fibred-setoids-representable-algebraic-spaces}
Let $S$ be an object of $\Sch_{fppf}$.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of
categories fibred in setoids over $(\Sch/S)_{fppf}$.
Let $F$, resp.\ $G$ be the presheaf which to $T$ associates
the set of isomorphism classes of objects of
$\mathcal{X}_T$, resp.\ $\mathcal{Y}_T$.
Let $a : F \to G$ be the map of presheaves corresponding to $f$.
Then $a$ is representable by algebraic spaces (see
Bootstrap,
Definition \ref{bootstrap-definition-morphism-representable-by-spaces})
if and only if $f$ is representable by algebraic spaces.
\end{lemma}
\begin{proof}
Omitted. Hint: Combine
Lemmas \ref{lemma-representable-by-spaces-morphism-equivalent}
and \ref{lemma-map-presheaves-representable-by-algebraic-spaces}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-representable-by-spaces}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
be categories fibred in groupoids over $(\Sch/S)_{fppf}$.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
representable by algebraic spaces.
Let $g : \mathcal{Z} \to \mathcal{Y}$ be any $1$-morphism.
Consider the fibre product diagram
$$
\xymatrix{
\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X} \ar[r]_-{g'} \ar[d]_{f'} &
\mathcal{X} \ar[d]^f \\
\mathcal{Z} \ar[r]^g & \mathcal{Y}
}
$$
Then the base change $f'$ is a $1$-morphism representable by
algebraic spaces.
\end{lemma}
\begin{proof}
This is formal.
\end{proof}
\begin{lemma}
\label{lemma-base-change-by-space-representable-by-space}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
be categories fibred in groupoids over $(\Sch/S)_{fppf}$
Let $f : \mathcal{X} \to \mathcal{Y}$,
$g : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms.
Assume
\begin{enumerate}
\item $f$ is representable by algebraic spaces, and
\item $\mathcal{Z}$ is representable by an algebraic space over $S$.
\end{enumerate}
Then the $2$-fibre product
$\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X}$
is representable by an algebraic space.
\end{lemma}
\begin{proof}
This is a reformulation of
Bootstrap, Lemma \ref{bootstrap-lemma-representable-by-spaces-over-space}.
First note that
$\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X}$
is fibred in setoids over $(\Sch/S)_{fppf}$.
Hence it is equivalent to $\mathcal{S}_F$ for some presheaf
$F$ on $(\Sch/S)_{fppf}$, see
Categories, Lemma \ref{categories-lemma-setoid-fibres}.
Moreover, let $G$ be an algebraic space which represents
$\mathcal{Z}$. The $1$-morphism
$\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z}$
is representable by algebraic spaces by
Lemma \ref{lemma-base-change-representable-by-spaces}.
And $\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z}$
corresponds to a morphism $F \to G$ by
Categories, Lemma \ref{categories-lemma-2-category-fibred-setoids}.
Then $F \to G$ is representable by algebraic spaces by
Lemma \ref{lemma-map-fibred-setoids-representable-algebraic-spaces}.
Hence
Bootstrap, Lemma \ref{bootstrap-lemma-representable-by-spaces-over-space}
implies that $F$ is an algebraic space as desired.
\end{proof}
\noindent
Let $S$, $\mathcal{X}$, $\mathcal{Y}$, $\mathcal{Z}$, $f$, $g$ be as in
Lemma \ref{lemma-base-change-by-space-representable-by-space}.
Let $F$ and $G$ be algebraic spaces over $S$ such that
$F$ represents $\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X}$
and $G$ represents $\mathcal{Z}$. The $1$-morphism
$f' : \mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z}$
corresponds to a morphism $f' : F \to G$ of algebraic spaces
by (\ref{equation-morphisms-spaces}).
Thus we have the following diagram
\begin{equation}
\label{equation-representable-by-algebraic-spaces-on-space}
\vcenter{
\xymatrix{
F \ar[d]_{f'} &
\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X}
\ar@{~>}[l] \ar[d] \ar[r] &
\mathcal{X} \ar[d]^f \\
G &
\mathcal{Z} \ar@{~>}[l] \ar[r]^-g &
\mathcal{Y}
}
}
\end{equation}
where the squiggly arrows represent the construction which associates
to a stack fibred in setoids its associated sheaf of isomorphism classes
of objects. The middle square is
$2$-commutative with equivalences as horizontal arrows.
\begin{lemma}
\label{lemma-composition-representable-by-spaces}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
be categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $f : \mathcal{X} \to \mathcal{Y}$, $g : \mathcal{Y} \to \mathcal{Z}$
are $1$-morphisms representable by algebraic spaces, then
$$
g \circ f : \mathcal{X} \longrightarrow \mathcal{Z}
$$
is a $1$-morphism representable by algebraic spaces.
\end{lemma}
\begin{proof}
This follows from
Lemma \ref{lemma-base-change-by-space-representable-by-space}.
Details omitted.
\end{proof}
\begin{lemma}
\label{lemma-product-representable-by-spaces}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}_i, \mathcal{Y}_i$ be categories fibred in groupoids over
$(\Sch/S)_{fppf}$, $i = 1, 2$.
Let $f_i : \mathcal{X}_i \to \mathcal{Y}_i$, $i = 1, 2$
be $1$-morphisms representable by algebraic spaces.
Then
$$
f_1 \times f_2 :
\mathcal{X}_1 \times \mathcal{X}_2
\longrightarrow
\mathcal{Y}_1 \times \mathcal{Y}_2
$$
is a $1$-morphism representable by algebraic spaces.
\end{lemma}
\begin{proof}
Write $f_1 \times f_2$ as the composition
$\mathcal{X}_1 \times \mathcal{X}_2 \to
\mathcal{Y}_1 \times \mathcal{X}_2 \to
\mathcal{Y}_1 \times \mathcal{Y}_2$.
The first arrow is the base change of $f_1$ by the map
$\mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1$, and the second arrow
is the base change of $f_2$ by the map
$\mathcal{Y}_1 \times \mathcal{Y}_2 \to \mathcal{Y}_2$.
Hence this lemma is a formal
consequence of Lemmas \ref{lemma-composition-representable-by-spaces}
and \ref{lemma-base-change-representable-by-spaces}.
\end{proof}
\begin{lemma}
\label{lemma-get-a-stack}
\begin{reference}
Lemma in an email of Matthew Emerton dated June 15, 2016
\end{reference}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X} \to \mathcal{Z}$ and $\mathcal{Y} \to \mathcal{Z}$
be $1$-morphisms of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
If $\mathcal{X} \to \mathcal{Z}$ is representable by algebraic spaces
and $\mathcal{Y}$ is a stack in groupoids, then
$\mathcal{X} \times_\mathcal{Z} \mathcal{Y}$ is a stack in groupoids.
\end{lemma}
\begin{proof}
The property of a morphism being representable by algebraic spaces
is preserved under base-change
(Lemma \ref{lemma-base-change-by-space-representable-by-space}),
and so, passing to the base-change
$\mathcal{X} \times_\mathcal{Z} \mathcal{Y}$ over $\mathcal{Y}$,
we may reduce to the case of a morphism of categories
fibred in groupoids $\mathcal{X} \to \mathcal{Y}$
which is representable by algebraic spaces, and
whose target is a stack in groupoids; our goal is then to prove
that $\mathcal{X}$ is also a stack in groupoids.
This follows from Stacks, Lemma
\ref{stacks-lemma-relative-sheaf-over-stack-is-stack}
whose assumptions are satisfied as a result of
Lemma \ref{lemma-criterion-map-representable-spaces-fibred-in-groupoids}.
\end{proof}
\section{Properties of morphisms representable by algebraic spaces}
\label{section-representable-properties}
\noindent
Here is the definition that makes this work.
\begin{definition}
\label{definition-relative-representable-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
of categories fibred in groupoids over $(\Sch/S)_{fppf}$.
Assume $f$ is representable by algebraic spaces.
Let $\mathcal{P}$ be a property of morphisms of algebraic spaces which
\begin{enumerate}
\item is preserved under any base change, and
\item is fppf local on the base, see
Descent on Spaces,
Definition \ref{spaces-descent-definition-property-morphisms-local}.
\end{enumerate}
In this case we say that $f$ has {\it property $\mathcal{P}$} if for every
$U \in \Ob((\Sch/S)_{fppf})$ and
any $y \in \mathcal{Y}_U$ the resulting morphism of algebraic spaces
$f_y : F_y \to U$, see
diagram (\ref{equation-representable-by-algebraic-spaces}),
has property $\mathcal{P}$.
\end{definition}
\noindent
It is important to note that we will only use this definition for
properties of morphisms that are stable under base change, and
local in the fppf topology on the target. This is
not because the definition doesn't make sense otherwise; rather it
is because we may want to give a different definition which is
better suited to the property we have in mind.
\begin{lemma}
\label{lemma-property-morphism-equivalent}
Let $S$ be an object of $\Sch_{fppf}$.
Let $\mathcal{P}$ be as in
Definition \ref{definition-relative-representable-property}.
Consider a $2$-commutative diagram
$$
\xymatrix{
\mathcal{X}' \ar[r] \ar[d]_{f'} & \mathcal{X} \ar[d]^f \\
\mathcal{Y}' \ar[r] & \mathcal{Y}
}
$$
of $1$-morphisms of categories fibred in groupoids over
$(\Sch/S)_{fppf}$.
Assume the horizontal arrows are equivalences and $f$ (or equivalently $f'$)
is representably by algebraic spaces.
Then $f$ has $\mathcal{P}$ if and only if $f'$ has $\mathcal{P}$.
\end{lemma}
\begin{proof}
Note that this makes sense by
Lemma \ref{lemma-representable-by-spaces-morphism-equivalent}.
Proof omitted.
\end{proof}
\noindent
Here is a sanity check.
\begin{lemma}
\label{lemma-map-presheaves-representable-by-spaces-transformation-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $a : F \to G$ be a map of presheaves on $(\Sch/S)_{fppf}$.
Let $\mathcal{P}$ be as in
Definition \ref{definition-relative-representable-property}.
Assume $a$ is representable by algebraic spaces.
Then $a : F \to G$ has property $\mathcal{P}$ (see
Bootstrap, Definition \ref{bootstrap-definition-property-transformation})
if and only if the corresponding morphism
$\mathcal{S}_F \to \mathcal{S}_G$ of categories fibred in groupoids
has property $\mathcal{P}$.
\end{lemma}
\begin{proof}
Note that the lemma makes sense by
Lemma \ref{lemma-map-presheaves-representable-by-algebraic-spaces}.
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-map-fibred-setoids-property}
Let $S$ be an object of $\Sch_{fppf}$. Let $\mathcal{P}$ be as in
Definition \ref{definition-relative-representable-property}.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of
categories fibred in setoids over $(\Sch/S)_{fppf}$.
Let $F$, resp.\ $G$ be the presheaf which to $T$ associates
the set of isomorphism classes of objects of
$\mathcal{X}_T$, resp.\ $\mathcal{Y}_T$.
Let $a : F \to G$ be the map of presheaves corresponding to $f$.
Then $a$ has $\mathcal{P}$ if and only if $f$ has $\mathcal{P}$.
\end{lemma}
\begin{proof}
The lemma makes sense by
Lemma \ref{lemma-map-fibred-setoids-representable-algebraic-spaces}.
The lemma follows on combining
Lemmas \ref{lemma-property-morphism-equivalent}
and \ref{lemma-map-presheaves-representable-by-spaces-transformation-property}.
\end{proof}
\begin{lemma}
\label{lemma-composition-representable-transformations-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}$, $\mathcal{Y}$, $\mathcal{Z}$ be categories fibred
in groupoids over $(\Sch/S)_{fppf}$.
Let $\mathcal{P}$ be a property as in
Definition \ref{definition-relative-representable-property}
which is stable under composition.
Let $f : \mathcal{X} \to \mathcal{Y}$,
$g : \mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms which
are representable by algebraic spaces.
If $f$ and $g$ have property $\mathcal{P}$ so does
$g \circ f : \mathcal{X} \to \mathcal{Z}$.
\end{lemma}
\begin{proof}
Note that the lemma makes sense by
Lemma \ref{lemma-composition-representable-by-spaces}.
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-base-change-representable-transformations-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
be categories fibred in groupoids over $(\Sch/S)_{fppf}$.
Let $\mathcal{P}$ be a property as in
Definition \ref{definition-relative-representable-property}.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
representable by algebraic spaces.
Let $g : \mathcal{Z} \to \mathcal{Y}$ be any $1$-morphism.
Consider the $2$-fibre product diagram
$$
\xymatrix{
\mathcal{Z} \times_{g, \mathcal{Y}, f} \mathcal{X} \ar[r]_-{g'} \ar[d]_{f'} &
\mathcal{X} \ar[d]^f \\
\mathcal{Z} \ar[r]^g & \mathcal{Y}
}
$$
If $f$ has $\mathcal{P}$, then the base change $f'$
has $\mathcal{P}$.
\end{lemma}
\begin{proof}
The lemma makes sense by
Lemma \ref{lemma-base-change-representable-by-spaces}.
Proof omitted.
\end{proof}
\begin{lemma}
\label{lemma-descent-representable-transformations-property}
Let $S$ be a scheme contained in $\Sch_{fppf}$.
Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$
be categories fibred in groupoids over $(\Sch/S)_{fppf}$.
Let $\mathcal{P}$ be a property as in
Definition \ref{definition-relative-representable-property}.
Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism
representable by algebraic spaces.
Let $g : \mathcal{Z} \to \mathcal{Y}$ be any $1$-morphism.
Consider the fibre product diagram