diff --git a/src/Data/Star/Decoration.agda b/src/Data/Star/Decoration.agda index 24428a5843..170b5abb07 100644 --- a/src/Data/Star/Decoration.agda +++ b/src/Data/Star/Decoration.agda @@ -28,7 +28,7 @@ data NonEmptyEdgePred {ℓ r p : Level} {I : Set ℓ} (T : Rel I r) -- Decorating an edge with more information. data DecoratedWith {ℓ r p : Level} {I : Set ℓ} {T : Rel I r} (P : EdgePred p T) - : Rel (NonEmpty (Star T)) p where + : Rel (NonEmpty (Star T)) (ℓ ⊔ r ⊔ p) where ↦ : ∀ {i j k} {x : T i j} {xs : Star T j k} (p : P x) → DecoratedWith P (nonEmpty (x ◅ xs)) (nonEmpty xs) diff --git a/src/Data/Star/Pointer.agda b/src/Data/Star/Pointer.agda index ed606807ce..bc86786f74 100644 --- a/src/Data/Star/Pointer.agda +++ b/src/Data/Star/Pointer.agda @@ -26,7 +26,7 @@ private data Pointer {T : Rel I r} (P : EdgePred p T) (Q : EdgePred q T) - : Rel (Maybe (NonEmpty (Star T))) (p ⊔ q) where + : Rel (Maybe (NonEmpty (Star T))) (ℓ ⊔ r ⊔ p ⊔ q) where step : ∀ {i j k} {x : T i j} {xs : Star T j k} (p : P x) → Pointer P Q (just (nonEmpty (x ◅ xs))) (just (nonEmpty xs)) diff --git a/src/Reflection/AnnotatedAST.agda b/src/Reflection/AnnotatedAST.agda index 61d55def7d..8ebc54b919 100644 --- a/src/Reflection/AnnotatedAST.agda +++ b/src/Reflection/AnnotatedAST.agda @@ -35,8 +35,8 @@ Annotation : ∀ ℓ → Set (suc ℓ) Annotation ℓ = ∀ {u} → ⟦ u ⟧ → Set ℓ -- An annotated type is a family over an Annotation and a reflected term. -Typeₐ : ∀ ℓ → Univ → Set (suc ℓ) -Typeₐ ℓ u = Annotation ℓ → ⟦ u ⟧ → Set ℓ +Typeₐ : ∀ ℓ → Univ → Set (suc (suc ℓ)) +Typeₐ ℓ u = Annotation ℓ → ⟦ u ⟧ → Set (suc ℓ) private variable @@ -168,7 +168,7 @@ mutual -- An annotation function computes the top-level annotation given a -- term annotated at all sub-terms. -AnnotationFun : Annotation ℓ → Set ℓ +AnnotationFun : Annotation ℓ → Set (suc ℓ) AnnotationFun Ann = ∀ u {t : ⟦ u ⟧} → Annotated′ Ann t → Ann t