Skip to content

Commit f3fb598

Browse files
authored
Systematise use of Relation.Binary.Definitions.DecidableEquality (#2354)
* systematic use of `DecidableEquality` * tweak
1 parent 4676ad7 commit f3fb598

File tree

23 files changed

+56
-59
lines changed

23 files changed

+56
-59
lines changed

src/Algebra/Solver/Monoid.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ open import Data.Nat.Base using (ℕ)
2020
open import Data.Product.Base using (_×_; uncurry)
2121
open import Data.Vec.Base using (Vec; lookup)
2222
open import Function.Base using (_∘_; _$_)
23-
open import Relation.Binary.Definitions using (Decidable)
23+
open import Relation.Binary.Definitions using (DecidableEquality)
2424

2525
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong)
2626
import Relation.Binary.Reflection
@@ -114,7 +114,7 @@ open module R = Relation.Binary.Reflection
114114

115115
infix 5 _≟_
116116

117-
_≟_ : {n} Decidable {A = Normal n} _≡_
117+
_≟_ : {n} DecidableEquality (Normal n)
118118
nf₁ ≟ nf₂ = Dec.map′ ≋⇒≡ ≡⇒≋ (nf₁ ≋? nf₂)
119119
where open ListEq Fin._≟_
120120

src/Axiom/UniquenessOfIdentityProofs.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ module Constant⇒UIP
6060
-- proof produced by the decision procedure.
6161

6262
module Decidable⇒UIP
63-
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_)
63+
{a} {A : Set a} (_≟_ : DecidableEquality A)
6464
where
6565

6666
≡-normalise : _≡_ {A = A} ⇒ _≡_

src/Data/Bool/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ open import Relation.Binary.Structures
2525
open import Relation.Binary.Bundles
2626
using (Setoid; DecSetoid; Poset; Preorder; TotalOrder; DecTotalOrder; StrictPartialOrder; StrictTotalOrder)
2727
open import Relation.Binary.Definitions
28-
using (Decidable; Reflexive; Transitive; Antisymmetric; Minimum; Maximum; Total; Irrelevant; Irreflexive; Asymmetric; Trans; Trichotomous; tri≈; tri<; tri>; _Respects₂_)
28+
using (Decidable; DecidableEquality; Reflexive; Transitive; Antisymmetric; Minimum; Maximum; Total; Irrelevant; Irreflexive; Asymmetric; Trans; Trichotomous; tri≈; tri<; tri>; _Respects₂_)
2929
open import Relation.Binary.PropositionalEquality.Core
3030
open import Relation.Binary.PropositionalEquality.Properties
3131
open import Relation.Nullary.Decidable.Core using (True; yes; no; fromWitness)
@@ -48,7 +48,7 @@ private
4848

4949
infix 4 _≟_
5050

51-
_≟_ : Decidable {A = Bool} _≡_
51+
_≟_ : DecidableEquality Bool
5252
true ≟ true = yes refl
5353
false ≟ false = yes refl
5454
true ≟ false = no λ()

src/Data/Char/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ open import Relation.Binary.Bundles
2323
open import Relation.Binary.Structures
2424
using (IsDecEquivalence; IsStrictPartialOrder; IsStrictTotalOrder; IsPreorder; IsPartialOrder; IsDecPartialOrder; IsEquivalence)
2525
open import Relation.Binary.Definitions
26-
using (Decidable; Trichotomous; Irreflexive; Transitive; Asymmetric; Antisymmetric; Symmetric; Substitutive; Reflexive; tri<; tri≈; tri>)
26+
using (Decidable; DecidableEquality; Trichotomous; Irreflexive; Transitive; Asymmetric; Antisymmetric; Symmetric; Substitutive; Reflexive; tri<; tri≈; tri>)
2727
import Relation.Binary.Construct.On as On
2828
import Relation.Binary.Construct.Subst.Equality as Subst
2929
import Relation.Binary.Construct.Closure.Reflexive as Refl
@@ -55,7 +55,7 @@ open import Agda.Builtin.Char.Properties
5555
-- Properties of _≡_
5656

5757
infix 4 _≟_
58-
_≟_ : Decidable {A = Char} _≡_
58+
_≟_ : DecidableEquality Char
5959
x ≟ y = map′ ≈⇒≡ ≈-reflexive (toℕ x ℕ.≟ toℕ y)
6060

6161
setoid : Setoid _ _

src/Data/List/Membership/DecPropositional.agda

+4-4
Original file line numberDiff line numberDiff line change
@@ -6,12 +6,12 @@
66

77
{-# OPTIONS --cubical-compatible --safe #-}
88

9-
open import Relation.Binary.Definitions using (Decidable)
10-
open import Relation.Binary.PropositionalEquality using (_≡_)
11-
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
9+
open import Relation.Binary.Definitions using (DecidableEquality)
1210

1311
module Data.List.Membership.DecPropositional
14-
{a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) where
12+
{a} {A : Set a} (_≟_ : DecidableEquality A) where
13+
14+
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
1515

1616
------------------------------------------------------------------------
1717
-- Re-export contents of propositional membership

src/Data/List/Membership/Propositional/Properties.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -259,7 +259,7 @@ module _ {r} {R : Rel A r} (R? : Binary.Decidable R) where
259259
∈-deduplicate⁻ : xs {z} z ∈ deduplicate R? xs z ∈ xs
260260
∈-deduplicate⁻ xs z∈dedup[R,xs] = Membership.∈-deduplicate⁻ (≡.setoid A) R? xs z∈dedup[R,xs]
261261

262-
module _ (_≈?_ : Binary.Decidable {A = A} _≡_) where
262+
module _ (_≈?_ : DecidableEquality A) where
263263

264264
∈-derun⁺ : {xs z} z ∈ xs z ∈ derun _≈?_ xs
265265
∈-derun⁺ z∈xs = Membership.∈-derun⁺ (≡.setoid A) _≈?_ (flip trans) z∈xs

src/Data/List/Relation/Binary/Equality/DecPropositional.agda

+4-4
Original file line numberDiff line numberDiff line change
@@ -10,16 +10,16 @@
1010

1111
{-# OPTIONS --cubical-compatible --safe #-}
1212

13-
open import Relation.Binary.Definitions using (Decidable)
14-
open import Relation.Binary.PropositionalEquality
13+
open import Relation.Binary.Definitions using (DecidableEquality)
1514

1615
module Data.List.Relation.Binary.Equality.DecPropositional
17-
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where
16+
{a} {A : Set a} (_≟_ : DecidableEquality A) where
1817

1918
open import Data.List.Base using (List)
2019
open import Data.List.Properties using (≡-dec)
2120
import Data.List.Relation.Binary.Equality.Propositional as PropositionalEq
2221
import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEq
22+
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
2323

2424
------------------------------------------------------------------------
2525
-- Publically re-export everything from decSetoid and propositional
@@ -34,5 +34,5 @@ open DecSetoidEq (decSetoid _≟_) public
3434

3535
infix 4 _≡?_
3636

37-
_≡?_ : Decidable (_≡_ {A = List A})
37+
_≡?_ : DecidableEquality (List A)
3838
_≡?_ = ≡-dec _≟_

src/Data/List/Relation/Binary/Sublist/DecPropositional.agda

+4-5
Original file line numberDiff line numberDiff line change
@@ -8,19 +8,18 @@
88

99
{-# OPTIONS --cubical-compatible --safe #-}
1010

11-
open import Relation.Binary.Bundles using (DecPoset)
12-
open import Relation.Binary.Structures using (IsDecPartialOrder)
13-
open import Relation.Binary.Definitions using (Decidable)
14-
open import Agda.Builtin.Equality using (_≡_)
11+
open import Relation.Binary.Definitions using (DecidableEquality)
1512

1613
module Data.List.Relation.Binary.Sublist.DecPropositional
17-
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_)
14+
{a} {A : Set a} (_≟_ : DecidableEquality A)
1815
where
1916

2017
open import Data.List.Relation.Binary.Equality.DecPropositional _≟_
2118
using (_≡?_)
2219
import Data.List.Relation.Binary.Sublist.DecSetoid as DecSetoidSublist
2320
import Data.List.Relation.Binary.Sublist.Propositional as PropositionalSublist
21+
open import Relation.Binary.Bundles using (DecPoset)
22+
open import Relation.Binary.Structures using (IsDecPartialOrder)
2423
open import Relation.Binary.PropositionalEquality
2524

2625
------------------------------------------------------------------------

src/Data/List/Relation/Binary/Sublist/DecPropositional/Solver.agda

+4-5
Original file line numberDiff line numberDiff line change
@@ -7,13 +7,12 @@
77

88
{-# OPTIONS --cubical-compatible --safe #-}
99

10-
open import Relation.Binary.Definitions using (Decidable)
11-
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
10+
open import Relation.Binary.Definitions using (DecidableEquality)
1211

1312
module Data.List.Relation.Binary.Sublist.DecPropositional.Solver
14-
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_)
13+
{a} {A : Set a} (_≟_ : DecidableEquality A)
1514
where
1615

17-
import Relation.Binary.PropositionalEquality.Properties as P
16+
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
1817

19-
open import Data.List.Relation.Binary.Sublist.DecSetoid.Solver (P.decSetoid _≟_) public
18+
open import Data.List.Relation.Binary.Sublist.DecSetoid.Solver (decSetoid _≟_) public

src/Data/Maybe/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ open import Data.Product.Base using (_,_)
1717
open import Function.Base using (_∋_; id; _∘_; _∘′_)
1818
open import Function.Definitions using (Injective)
1919
open import Level using (Level)
20-
open import Relation.Binary.Definitions using (Decidable)
20+
open import Relation.Binary.Definitions using (DecidableEquality)
2121
open import Relation.Binary.PropositionalEquality
2222
open import Relation.Nullary.Decidable using (yes; no)
2323
open import Relation.Nullary.Decidable using (map′)
@@ -35,7 +35,7 @@ private
3535
just-injective : {x y} (Maybe A ∋ just x) ≡ just y x ≡ y
3636
just-injective refl = refl
3737

38-
≡-dec : Decidable _≡_ Decidable {A = Maybe A} _≡_
38+
≡-dec : DecidableEquality A DecidableEquality (Maybe A)
3939
≡-dec _≟_ nothing nothing = yes refl
4040
≡-dec _≟_ (just x) nothing = no λ()
4141
≡-dec _≟_ nothing (just y) = no λ()

src/Data/Nat/Binary/Properties.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ infix 4 _<?_ _≟_ _≤?_
6767
1+[2_]-injective : Injective _≡_ _≡_ 1+[2_]
6868
1+[2_]-injective refl = refl
6969

70-
_≟_ : Decidable {A = ℕᵇ} _≡_
70+
_≟_ : DecidableEquality ℕᵇ
7171
zero ≟ zero = yes refl
7272
zero ≟ 2[1+ _ ] = no λ()
7373
zero ≟ 1+[2 _ ] = no λ()

src/Data/Record.agda

+2-3
Original file line numberDiff line numberDiff line change
@@ -16,15 +16,14 @@ open import Data.Product.Base hiding (proj₁; proj₂)
1616
open import Data.Unit.Polymorphic
1717
open import Function.Base using (id; _∘_)
1818
open import Level
19-
open import Relation.Binary.Definitions using (Decidable)
20-
open import Relation.Binary.PropositionalEquality
19+
open import Relation.Binary.Definitions using (DecidableEquality)
2120
open import Relation.Nullary
2221
open import Relation.Nullary.Decidable
2322

2423
-- The module is parametrised by the type of labels, which should come
2524
-- with decidable equality.
2625

27-
module Data.Record {ℓ} (Label : Set ℓ) (_≟_ : Decidable {A = Label} _≡_) where
26+
module Data.Record {ℓ} (Label : Set ℓ) (_≟_ : DecidableEquality Label) where
2827

2928
------------------------------------------------------------------------
3029
-- A Σ-type with a manifest field

src/Data/String/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ open import Relation.Binary.Bundles
2323
open import Relation.Binary.Structures
2424
using (IsEquivalence; IsDecEquivalence; IsStrictPartialOrder; IsStrictTotalOrder; IsDecPartialOrder; IsDecTotalOrder)
2525
open import Relation.Binary.Definitions
26-
using (Reflexive; Symmetric; Transitive; Substitutive; Decidable)
26+
using (Reflexive; Symmetric; Transitive; Substitutive; Decidable; DecidableEquality)
2727
open import Relation.Binary.PropositionalEquality.Core
2828
import Relation.Binary.Construct.On as On
2929
import Relation.Binary.PropositionalEquality.Properties as PropEq
@@ -89,7 +89,7 @@ x ≈? y = Pointwise.decidable Char._≟_ (toList x) (toList y)
8989

9090
infix 4 _≟_
9191

92-
_≟_ : Decidable _≡_
92+
_≟_ : DecidableEquality String
9393
x ≟ y = map′ ≈⇒≡ ≈-reflexive $ x ≈? y
9494

9595
≡-setoid : Setoid _ _

src/Data/Sum/Properties.agda

+4-4
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ open import Level
1212
open import Data.Sum.Base
1313
open import Function.Base using (_∋_; _∘_; id)
1414
open import Function.Bundles using (mk↔ₛ′; _↔_)
15-
open import Relation.Binary.Definitions using (Decidable)
15+
open import Relation.Binary.Definitions using (DecidableEquality)
1616
open import Relation.Binary.PropositionalEquality
1717
open import Relation.Nullary.Decidable using (yes; no)
1818
open import Relation.Nullary.Decidable using (map′)
@@ -34,10 +34,10 @@ inj₁-injective refl = refl
3434
inj₂-injective : {x y} (A ⊎ B ∋ inj₂ x) ≡ inj₂ y x ≡ y
3535
inj₂-injective refl = refl
3636

37-
module _ (dec₁ : Decidable {A = A} {B = A} _≡_)
38-
(dec₂ : Decidable {A = B} {B = B} _≡_) where
37+
module _ (dec₁ : DecidableEquality A)
38+
(dec₂ : DecidableEquality B) where
3939

40-
≡-dec : Decidable {A = A ⊎ B} _≡_
40+
≡-dec : DecidableEquality (A ⊎ B)
4141
≡-dec (inj₁ x) (inj₁ y) = map′ (cong inj₁) inj₁-injective (dec₁ x y)
4242
≡-dec (inj₁ x) (inj₂ y) = no λ()
4343
≡-dec (inj₂ x) (inj₁ y) = no λ()

src/Data/These/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ module Data.These.Properties where
1111
open import Data.Product.Base using (_×_; _,_; <_,_>; uncurry)
1212
open import Data.These.Base
1313
open import Function.Base using (_∘_)
14-
open import Relation.Binary.Definitions using (Decidable)
14+
open import Relation.Binary.Definitions using (DecidableEquality)
1515
open import Relation.Binary.PropositionalEquality
1616
open import Relation.Nullary.Decidable using (yes; no; map′; _×-dec_)
1717

@@ -35,7 +35,7 @@ module _ {a b} {A : Set a} {B : Set b} where
3535
these-injective : {x y : A} {a b : B} these x a ≡ these y b x ≡ y × a ≡ b
3636
these-injective = < these-injectiveˡ , these-injectiveʳ >
3737

38-
≡-dec : Decidable _≡_ Decidable _≡_ Decidable {A = These A B} _≡_
38+
≡-dec : DecidableEquality A DecidableEquality B DecidableEquality (These A B)
3939
≡-dec dec₁ dec₂ (this x) (this y) =
4040
map′ (cong this) this-injective (dec₁ x y)
4141
≡-dec dec₁ dec₂ (this x) (that y) = no λ()

src/Data/Unit/Polymorphic/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ open import Relation.Binary.Bundles
2121
open import Relation.Binary.Structures
2222
using (IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder)
2323
open import Relation.Binary.Definitions
24-
using (Decidable; Antisymmetric; Total)
24+
using (DecidableEquality; Antisymmetric; Total)
2525
open import Relation.Binary.PropositionalEquality
2626
using (_≡_; refl; trans; decSetoid; setoid; isEquivalence)
2727

@@ -35,7 +35,7 @@ private
3535

3636
infix 4 _≟_
3737

38-
_≟_ : Decidable {A = ⊤ {ℓ}} _≡_
38+
_≟_ : DecidableEquality (⊤ {ℓ})
3939
_ ≟ _ = yes refl
4040

4141
≡-setoid : Setoid ℓ ℓ

src/Data/Unit/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ open import Relation.Binary.Bundles
1616
using (Setoid; DecSetoid; Poset; DecTotalOrder)
1717
open import Relation.Binary.Structures
1818
using (IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder)
19-
open import Relation.Binary.Definitions using (Decidable; Total; Antisymmetric)
19+
open import Relation.Binary.Definitions using (DecidableEquality; Total; Antisymmetric)
2020
open import Relation.Binary.PropositionalEquality
2121

2222
------------------------------------------------------------------------
@@ -30,7 +30,7 @@ open import Relation.Binary.PropositionalEquality
3030

3131
infix 4 _≟_
3232

33-
_≟_ : Decidable {A = ⊤} _≡_
33+
_≟_ : DecidableEquality ⊤
3434
_ ≟ _ = yes refl
3535

3636
≡-setoid : Setoid 0ℓ 0ℓ

src/Data/Vec/Membership/DecPropositional.agda

+4-4
Original file line numberDiff line numberDiff line change
@@ -6,12 +6,12 @@
66

77
{-# OPTIONS --cubical-compatible --safe #-}
88

9-
open import Relation.Binary.Definitions using (Decidable)
10-
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
11-
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
9+
open import Relation.Binary.Definitions using (DecidableEquality)
1210

1311
module Data.Vec.Membership.DecPropositional
14-
{a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) where
12+
{a} {A : Set a} (_≟_ : DecidableEquality A) where
13+
14+
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
1515

1616
------------------------------------------------------------------------
1717
-- Re-export contents of propositional membership

src/Data/Vec/Relation/Binary/Equality/DecPropositional.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -6,14 +6,14 @@
66

77
{-# OPTIONS --cubical-compatible --safe #-}
88

9-
open import Relation.Binary.Definitions using (Decidable)
10-
open import Relation.Binary.PropositionalEquality
9+
open import Relation.Binary.Definitions using (DecidableEquality)
1110

1211
module Data.Vec.Relation.Binary.Equality.DecPropositional
13-
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where
12+
{a} {A : Set a} (_≟_ : DecidableEquality A) where
1413

1514
import Data.Vec.Relation.Binary.Equality.Propositional as PEq
1615
import Data.Vec.Relation.Binary.Equality.DecSetoid as DSEq
16+
open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
1717

1818
------------------------------------------------------------------------
1919
-- Publicly re-export everything from decSetoid and propositional

src/Effect/Monad/Partiality.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ open import Function.Bundles using (_⇔_; mk⇔)
2121
open import Level using (Level; _⊔_)
2222
open import Relation.Binary.Core as B hiding (Rel; _⇔_)
2323
open import Relation.Binary.Definitions
24-
using (Decidable; Reflexive; Symmetric; Transitive)
24+
using (DecidableEquality; Reflexive; Symmetric; Transitive)
2525
open import Relation.Binary.Structures
2626
using (IsPreorder; IsEquivalence)
2727
open import Relation.Binary.Bundles
@@ -115,7 +115,7 @@ data Kind : Set where
115115

116116
infix 4 _≟-Kind_
117117

118-
_≟-Kind_ : Decidable (_≡_ {A = Kind})
118+
_≟-Kind_ : DecidableEquality Kind
119119
_≟-Kind_ strong strong = yes ≡.refl
120120
_≟-Kind_ strong (other k) = no λ()
121121
_≟-Kind_ (other k) strong = no λ()

src/Reflection/AST/Term.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -141,8 +141,8 @@ _≟-Clause_ : DecidableEquality Clause
141141
_≟-Clauses_ : DecidableEquality Clauses
142142
_≟_ : DecidableEquality Term
143143
_≟-Sort_ : DecidableEquality Sort
144-
_≟-Patterns_ : Decidable (_≡_ {A = Args Pattern})
145-
_≟-Pattern_ : Decidable (_≡_ {A = Pattern})
144+
_≟-Patterns_ : DecidableEquality (Args Pattern)
145+
_≟-Pattern_ : DecidableEquality Pattern
146146

147147
-- Decidable equality 'transformers'
148148
-- We need to inline these because the terms are not sized so

src/Relation/Binary/Construct/Closure/Reflexive/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ open import Relation.Binary.Core using (Rel; REL; _=[_]⇒_)
1717
open import Relation.Binary.Structures
1818
using (IsPreorder; IsStrictPartialOrder; IsPartialOrder; IsDecStrictPartialOrder; IsDecPartialOrder; IsStrictTotalOrder; IsTotalOrder; IsDecTotalOrder)
1919
open import Relation.Binary.Definitions
20-
using (Symmetric; Transitive; Reflexive; Asymmetric; Antisymmetric; Trichotomous; Total; Decidable; tri<; tri≈; tri>; _Respectsˡ_; _Respectsʳ_; _Respects_; _Respects₂_)
20+
using (Symmetric; Transitive; Reflexive; Asymmetric; Antisymmetric; Trichotomous; Total; Decidable; DecidableEquality; tri<; tri≈; tri>; _Respectsˡ_; _Respectsʳ_; _Respects_; _Respects₂_)
2121
open import Relation.Binary.Construct.Closure.Reflexive
2222
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
2323
import Relation.Binary.PropositionalEquality.Properties as ≡
@@ -78,7 +78,7 @@ module _ {_~_ : Rel A ℓ} where
7878
... | tri≈ _ refl _ = inj₁ refl
7979
... | tri> _ _ c = inj₂ [ c ]
8080

81-
dec : Decidable {A = A} _≡_ Decidable _~_ Decidable _~ᵒ_
81+
dec : DecidableEquality A Decidable _~_ Decidable _~ᵒ_
8282
dec ≡-dec ~-dec a b = Dec.map ⊎⇔Refl (≡-dec a b ⊎-dec ~-dec a b)
8383

8484
decidable : Trichotomous _≡_ _~_ Decidable _~ᵒ_

src/Relation/Binary/PropositionalEquality/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ open import Relation.Binary.Bundles
1919
open import Relation.Binary.Structures
2020
using (IsEquivalence; IsDecEquivalence; IsPreorder; IsPartialOrder)
2121
open import Relation.Binary.Definitions
22-
using (Decidable; DecidableEquality)
22+
using (DecidableEquality)
2323
import Relation.Binary.Properties.Setoid as Setoid
2424
open import Relation.Binary.PropositionalEquality.Core
2525
open import Relation.Unary using (Pred)
@@ -157,7 +157,7 @@ isEquivalence = record
157157
; trans = trans
158158
}
159159

160-
isDecEquivalence : Decidable _≡_ IsDecEquivalence {A = A} _≡_
160+
isDecEquivalence : DecidableEquality A IsDecEquivalence _≡_
161161
isDecEquivalence _≟_ = record
162162
{ isEquivalence = isEquivalence
163163
; _≟_ = _≟_

0 commit comments

Comments
 (0)