File tree 23 files changed +56
-59
lines changed
Construct/Closure/Reflexive
23 files changed +56
-59
lines changed Original file line number Diff line number Diff line change @@ -20,7 +20,7 @@ open import Data.Nat.Base using (ℕ)
20
20
open import Data.Product.Base using (_×_; uncurry)
21
21
open import Data.Vec.Base using (Vec; lookup)
22
22
open import Function.Base using (_∘_; _$_)
23
- open import Relation.Binary.Definitions using (Decidable )
23
+ open import Relation.Binary.Definitions using (DecidableEquality )
24
24
25
25
open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong)
26
26
import Relation.Binary.Reflection
@@ -114,7 +114,7 @@ open module R = Relation.Binary.Reflection
114
114
115
115
infix 5 _≟_
116
116
117
- _≟_ : ∀ {n} → Decidable {A = Normal n} _≡_
117
+ _≟_ : ∀ {n} → DecidableEquality ( Normal n)
118
118
nf₁ ≟ nf₂ = Dec.map′ ≋⇒≡ ≡⇒≋ (nf₁ ≋? nf₂)
119
119
where open ListEq Fin._≟_
120
120
Original file line number Diff line number Diff line change @@ -60,7 +60,7 @@ module Constant⇒UIP
60
60
-- proof produced by the decision procedure.
61
61
62
62
module Decidable⇒UIP
63
- {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_ )
63
+ {a} {A : Set a} (_≟_ : DecidableEquality A )
64
64
where
65
65
66
66
≡-normalise : _≡_ {A = A} ⇒ _≡_
Original file line number Diff line number Diff line change @@ -25,7 +25,7 @@ open import Relation.Binary.Structures
25
25
open import Relation.Binary.Bundles
26
26
using (Setoid; DecSetoid; Poset; Preorder; TotalOrder; DecTotalOrder; StrictPartialOrder; StrictTotalOrder)
27
27
open import Relation.Binary.Definitions
28
- using (Decidable; Reflexive; Transitive; Antisymmetric; Minimum; Maximum; Total; Irrelevant; Irreflexive; Asymmetric; Trans; Trichotomous; tri≈; tri<; tri>; _Respects₂_)
28
+ using (Decidable; DecidableEquality; Reflexive; Transitive; Antisymmetric; Minimum; Maximum; Total; Irrelevant; Irreflexive; Asymmetric; Trans; Trichotomous; tri≈; tri<; tri>; _Respects₂_)
29
29
open import Relation.Binary.PropositionalEquality.Core
30
30
open import Relation.Binary.PropositionalEquality.Properties
31
31
open import Relation.Nullary.Decidable.Core using (True; yes; no; fromWitness)
@@ -48,7 +48,7 @@ private
48
48
49
49
infix 4 _≟_
50
50
51
- _≟_ : Decidable {A = Bool} _≡_
51
+ _≟_ : DecidableEquality Bool
52
52
true ≟ true = yes refl
53
53
false ≟ false = yes refl
54
54
true ≟ false = no λ ()
Original file line number Diff line number Diff line change @@ -23,7 +23,7 @@ open import Relation.Binary.Bundles
23
23
open import Relation.Binary.Structures
24
24
using (IsDecEquivalence; IsStrictPartialOrder; IsStrictTotalOrder; IsPreorder; IsPartialOrder; IsDecPartialOrder; IsEquivalence)
25
25
open import Relation.Binary.Definitions
26
- using (Decidable; Trichotomous; Irreflexive; Transitive; Asymmetric; Antisymmetric; Symmetric; Substitutive; Reflexive; tri<; tri≈; tri>)
26
+ using (Decidable; DecidableEquality; Trichotomous; Irreflexive; Transitive; Asymmetric; Antisymmetric; Symmetric; Substitutive; Reflexive; tri<; tri≈; tri>)
27
27
import Relation.Binary.Construct.On as On
28
28
import Relation.Binary.Construct.Subst.Equality as Subst
29
29
import Relation.Binary.Construct.Closure.Reflexive as Refl
@@ -55,7 +55,7 @@ open import Agda.Builtin.Char.Properties
55
55
-- Properties of _≡_
56
56
57
57
infix 4 _≟_
58
- _≟_ : Decidable {A = Char} _≡_
58
+ _≟_ : DecidableEquality Char
59
59
x ≟ y = map′ ≈⇒≡ ≈-reflexive (toℕ x ℕ.≟ toℕ y)
60
60
61
61
setoid : Setoid _ _
Original file line number Diff line number Diff line change 6
6
7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
- open import Relation.Binary.Definitions using (Decidable)
10
- open import Relation.Binary.PropositionalEquality using (_≡_)
11
- open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
9
+ open import Relation.Binary.Definitions using (DecidableEquality)
12
10
13
11
module Data.List.Membership.DecPropositional
14
- {a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) where
12
+ {a} {A : Set a} (_≟_ : DecidableEquality A) where
13
+
14
+ open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
15
15
16
16
------------------------------------------------------------------------
17
17
-- Re-export contents of propositional membership
Original file line number Diff line number Diff line change @@ -259,7 +259,7 @@ module _ {r} {R : Rel A r} (R? : Binary.Decidable R) where
259
259
∈-deduplicate⁻ : ∀ xs {z} → z ∈ deduplicate R? xs → z ∈ xs
260
260
∈-deduplicate⁻ xs z∈dedup[R,xs] = Membership.∈-deduplicate⁻ (≡.setoid A) R? xs z∈dedup[R,xs]
261
261
262
- module _ (_≈?_ : Binary.Decidable {A = A} _≡_ ) where
262
+ module _ (_≈?_ : DecidableEquality A ) where
263
263
264
264
∈-derun⁺ : ∀ {xs z} → z ∈ xs → z ∈ derun _≈?_ xs
265
265
∈-derun⁺ z∈xs = Membership.∈-derun⁺ (≡.setoid A) _≈?_ (flip trans) z∈xs
Original file line number Diff line number Diff line change 10
10
11
11
{-# OPTIONS --cubical-compatible --safe #-}
12
12
13
- open import Relation.Binary.Definitions using (Decidable)
14
- open import Relation.Binary.PropositionalEquality
13
+ open import Relation.Binary.Definitions using (DecidableEquality)
15
14
16
15
module Data.List.Relation.Binary.Equality.DecPropositional
17
- {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_ ) where
16
+ {a} {A : Set a} (_≟_ : DecidableEquality A ) where
18
17
19
18
open import Data.List.Base using (List)
20
19
open import Data.List.Properties using (≡-dec)
21
20
import Data.List.Relation.Binary.Equality.Propositional as PropositionalEq
22
21
import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEq
22
+ open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
23
23
24
24
------------------------------------------------------------------------
25
25
-- Publically re-export everything from decSetoid and propositional
@@ -34,5 +34,5 @@ open DecSetoidEq (decSetoid _≟_) public
34
34
35
35
infix 4 _≡?_
36
36
37
- _≡?_ : Decidable (_≡_ {A = List A} )
37
+ _≡?_ : DecidableEquality ( List A)
38
38
_≡?_ = ≡-dec _≟_
Original file line number Diff line number Diff line change 8
8
9
9
{-# OPTIONS --cubical-compatible --safe #-}
10
10
11
- open import Relation.Binary.Bundles using (DecPoset)
12
- open import Relation.Binary.Structures using (IsDecPartialOrder)
13
- open import Relation.Binary.Definitions using (Decidable)
14
- open import Agda.Builtin.Equality using (_≡_)
11
+ open import Relation.Binary.Definitions using (DecidableEquality)
15
12
16
13
module Data.List.Relation.Binary.Sublist.DecPropositional
17
- {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_ )
14
+ {a} {A : Set a} (_≟_ : DecidableEquality A )
18
15
where
19
16
20
17
open import Data.List.Relation.Binary.Equality.DecPropositional _≟_
21
18
using (_≡?_)
22
19
import Data.List.Relation.Binary.Sublist.DecSetoid as DecSetoidSublist
23
20
import Data.List.Relation.Binary.Sublist.Propositional as PropositionalSublist
21
+ open import Relation.Binary.Bundles using (DecPoset)
22
+ open import Relation.Binary.Structures using (IsDecPartialOrder)
24
23
open import Relation.Binary.PropositionalEquality
25
24
26
25
------------------------------------------------------------------------
Original file line number Diff line number Diff line change 7
7
8
8
{-# OPTIONS --cubical-compatible --safe #-}
9
9
10
- open import Relation.Binary.Definitions using (Decidable)
11
- open import Relation.Binary.PropositionalEquality.Core using (_≡_)
10
+ open import Relation.Binary.Definitions using (DecidableEquality)
12
11
13
12
module Data.List.Relation.Binary.Sublist.DecPropositional.Solver
14
- {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_ )
13
+ {a} {A : Set a} (_≟_ : DecidableEquality A )
15
14
where
16
15
17
- import Relation.Binary.PropositionalEquality.Properties as P
16
+ open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
18
17
19
- open import Data.List.Relation.Binary.Sublist.DecSetoid.Solver (P. decSetoid _≟_) public
18
+ open import Data.List.Relation.Binary.Sublist.DecSetoid.Solver (decSetoid _≟_) public
Original file line number Diff line number Diff line change @@ -17,7 +17,7 @@ open import Data.Product.Base using (_,_)
17
17
open import Function.Base using (_∋_; id; _∘_; _∘′_)
18
18
open import Function.Definitions using (Injective)
19
19
open import Level using (Level)
20
- open import Relation.Binary.Definitions using (Decidable )
20
+ open import Relation.Binary.Definitions using (DecidableEquality )
21
21
open import Relation.Binary.PropositionalEquality
22
22
open import Relation.Nullary.Decidable using (yes; no)
23
23
open import Relation.Nullary.Decidable using (map′)
@@ -35,7 +35,7 @@ private
35
35
just-injective : ∀ {x y} → (Maybe A ∋ just x) ≡ just y → x ≡ y
36
36
just-injective refl = refl
37
37
38
- ≡-dec : Decidable _≡_ → Decidable {A = Maybe A} _≡_
38
+ ≡-dec : DecidableEquality A → DecidableEquality ( Maybe A)
39
39
≡-dec _≟_ nothing nothing = yes refl
40
40
≡-dec _≟_ (just x) nothing = no λ ()
41
41
≡-dec _≟_ nothing (just y) = no λ ()
Original file line number Diff line number Diff line change @@ -67,7 +67,7 @@ infix 4 _<?_ _≟_ _≤?_
67
67
1+[2_]-injective : Injective _≡_ _≡_ 1+[2_]
68
68
1+[2_]-injective refl = refl
69
69
70
- _≟_ : Decidable {A = ℕᵇ} _≡_
70
+ _≟_ : DecidableEquality ℕᵇ
71
71
zero ≟ zero = yes refl
72
72
zero ≟ 2[1+ _ ] = no λ ()
73
73
zero ≟ 1+[2 _ ] = no λ ()
Original file line number Diff line number Diff line change @@ -16,15 +16,14 @@ open import Data.Product.Base hiding (proj₁; proj₂)
16
16
open import Data.Unit.Polymorphic
17
17
open import Function.Base using (id; _∘_)
18
18
open import Level
19
- open import Relation.Binary.Definitions using (Decidable)
20
- open import Relation.Binary.PropositionalEquality
19
+ open import Relation.Binary.Definitions using (DecidableEquality)
21
20
open import Relation.Nullary
22
21
open import Relation.Nullary.Decidable
23
22
24
23
-- The module is parametrised by the type of labels, which should come
25
24
-- with decidable equality.
26
25
27
- module Data.Record {ℓ} (Label : Set ℓ) (_≟_ : Decidable {A = Label} _≡_ ) where
26
+ module Data.Record {ℓ} (Label : Set ℓ) (_≟_ : DecidableEquality Label) where
28
27
29
28
------------------------------------------------------------------------
30
29
-- A Σ-type with a manifest field
Original file line number Diff line number Diff line change @@ -23,7 +23,7 @@ open import Relation.Binary.Bundles
23
23
open import Relation.Binary.Structures
24
24
using (IsEquivalence; IsDecEquivalence; IsStrictPartialOrder; IsStrictTotalOrder; IsDecPartialOrder; IsDecTotalOrder)
25
25
open import Relation.Binary.Definitions
26
- using (Reflexive; Symmetric; Transitive; Substitutive; Decidable)
26
+ using (Reflexive; Symmetric; Transitive; Substitutive; Decidable; DecidableEquality )
27
27
open import Relation.Binary.PropositionalEquality.Core
28
28
import Relation.Binary.Construct.On as On
29
29
import Relation.Binary.PropositionalEquality.Properties as PropEq
@@ -89,7 +89,7 @@ x ≈? y = Pointwise.decidable Char._≟_ (toList x) (toList y)
89
89
90
90
infix 4 _≟_
91
91
92
- _≟_ : Decidable _≡_
92
+ _≟_ : DecidableEquality String
93
93
x ≟ y = map′ ≈⇒≡ ≈-reflexive $ x ≈? y
94
94
95
95
≡-setoid : Setoid _ _
Original file line number Diff line number Diff line change @@ -12,7 +12,7 @@ open import Level
12
12
open import Data.Sum.Base
13
13
open import Function.Base using (_∋_; _∘_; id)
14
14
open import Function.Bundles using (mk↔ₛ′; _↔_)
15
- open import Relation.Binary.Definitions using (Decidable )
15
+ open import Relation.Binary.Definitions using (DecidableEquality )
16
16
open import Relation.Binary.PropositionalEquality
17
17
open import Relation.Nullary.Decidable using (yes; no)
18
18
open import Relation.Nullary.Decidable using (map′)
@@ -34,10 +34,10 @@ inj₁-injective refl = refl
34
34
inj₂-injective : ∀ {x y} → (A ⊎ B ∋ inj₂ x) ≡ inj₂ y → x ≡ y
35
35
inj₂-injective refl = refl
36
36
37
- module _ (dec₁ : Decidable {A = A} {B = A} _≡_ )
38
- (dec₂ : Decidable {A = B} {B = B} _≡_ ) where
37
+ module _ (dec₁ : DecidableEquality A )
38
+ (dec₂ : DecidableEquality B ) where
39
39
40
- ≡-dec : Decidable {A = A ⊎ B} _≡_
40
+ ≡-dec : DecidableEquality (A ⊎ B)
41
41
≡-dec (inj₁ x) (inj₁ y) = map′ (cong inj₁) inj₁-injective (dec₁ x y)
42
42
≡-dec (inj₁ x) (inj₂ y) = no λ ()
43
43
≡-dec (inj₂ x) (inj₁ y) = no λ ()
Original file line number Diff line number Diff line change @@ -11,7 +11,7 @@ module Data.These.Properties where
11
11
open import Data.Product.Base using (_×_; _,_; <_,_>; uncurry)
12
12
open import Data.These.Base
13
13
open import Function.Base using (_∘_)
14
- open import Relation.Binary.Definitions using (Decidable )
14
+ open import Relation.Binary.Definitions using (DecidableEquality )
15
15
open import Relation.Binary.PropositionalEquality
16
16
open import Relation.Nullary.Decidable using (yes; no; map′; _×-dec_)
17
17
@@ -35,7 +35,7 @@ module _ {a b} {A : Set a} {B : Set b} where
35
35
these-injective : ∀ {x y : A} {a b : B} → these x a ≡ these y b → x ≡ y × a ≡ b
36
36
these-injective = < these-injectiveˡ , these-injectiveʳ >
37
37
38
- ≡-dec : Decidable _≡_ → Decidable _≡_ → Decidable {A = These A B} _≡_
38
+ ≡-dec : DecidableEquality A → DecidableEquality B → DecidableEquality ( These A B)
39
39
≡-dec dec₁ dec₂ (this x) (this y) =
40
40
map′ (cong this) this-injective (dec₁ x y)
41
41
≡-dec dec₁ dec₂ (this x) (that y) = no λ ()
Original file line number Diff line number Diff line change @@ -21,7 +21,7 @@ open import Relation.Binary.Bundles
21
21
open import Relation.Binary.Structures
22
22
using (IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder)
23
23
open import Relation.Binary.Definitions
24
- using (Decidable ; Antisymmetric; Total)
24
+ using (DecidableEquality ; Antisymmetric; Total)
25
25
open import Relation.Binary.PropositionalEquality
26
26
using (_≡_; refl; trans; decSetoid; setoid; isEquivalence)
27
27
@@ -35,7 +35,7 @@ private
35
35
36
36
infix 4 _≟_
37
37
38
- _≟_ : Decidable {A = ⊤ {ℓ}} _≡_
38
+ _≟_ : DecidableEquality ( ⊤ {ℓ})
39
39
_ ≟ _ = yes refl
40
40
41
41
≡-setoid : ∀ ℓ → Setoid ℓ ℓ
Original file line number Diff line number Diff line change @@ -16,7 +16,7 @@ open import Relation.Binary.Bundles
16
16
using (Setoid; DecSetoid; Poset; DecTotalOrder)
17
17
open import Relation.Binary.Structures
18
18
using (IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder)
19
- open import Relation.Binary.Definitions using (Decidable ; Total; Antisymmetric)
19
+ open import Relation.Binary.Definitions using (DecidableEquality ; Total; Antisymmetric)
20
20
open import Relation.Binary.PropositionalEquality
21
21
22
22
------------------------------------------------------------------------
@@ -30,7 +30,7 @@ open import Relation.Binary.PropositionalEquality
30
30
31
31
infix 4 _≟_
32
32
33
- _≟_ : Decidable {A = ⊤} _≡_
33
+ _≟_ : DecidableEquality ⊤
34
34
_ ≟ _ = yes refl
35
35
36
36
≡-setoid : Setoid 0ℓ 0ℓ
Original file line number Diff line number Diff line change 6
6
7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
- open import Relation.Binary.Definitions using (Decidable)
10
- open import Relation.Binary.PropositionalEquality.Core using (_≡_)
11
- open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
9
+ open import Relation.Binary.Definitions using (DecidableEquality)
12
10
13
11
module Data.Vec.Membership.DecPropositional
14
- {a} {A : Set a} (_≟_ : Decidable (_≡_ {A = A})) where
12
+ {a} {A : Set a} (_≟_ : DecidableEquality A) where
13
+
14
+ open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
15
15
16
16
------------------------------------------------------------------------
17
17
-- Re-export contents of propositional membership
Original file line number Diff line number Diff line change 6
6
7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
- open import Relation.Binary.Definitions using (Decidable)
10
- open import Relation.Binary.PropositionalEquality
9
+ open import Relation.Binary.Definitions using (DecidableEquality)
11
10
12
11
module Data.Vec.Relation.Binary.Equality.DecPropositional
13
- {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_ ) where
12
+ {a} {A : Set a} (_≟_ : DecidableEquality A ) where
14
13
15
14
import Data.Vec.Relation.Binary.Equality.Propositional as PEq
16
15
import Data.Vec.Relation.Binary.Equality.DecSetoid as DSEq
16
+ open import Relation.Binary.PropositionalEquality.Properties using (decSetoid)
17
17
18
18
------------------------------------------------------------------------
19
19
-- Publicly re-export everything from decSetoid and propositional
Original file line number Diff line number Diff line change @@ -21,7 +21,7 @@ open import Function.Bundles using (_⇔_; mk⇔)
21
21
open import Level using (Level; _⊔_)
22
22
open import Relation.Binary.Core as B hiding (Rel; _⇔_)
23
23
open import Relation.Binary.Definitions
24
- using (Decidable ; Reflexive; Symmetric; Transitive)
24
+ using (DecidableEquality ; Reflexive; Symmetric; Transitive)
25
25
open import Relation.Binary.Structures
26
26
using (IsPreorder; IsEquivalence)
27
27
open import Relation.Binary.Bundles
@@ -115,7 +115,7 @@ data Kind : Set where
115
115
116
116
infix 4 _≟-Kind_
117
117
118
- _≟-Kind_ : Decidable (_≡_ {A = Kind})
118
+ _≟-Kind_ : DecidableEquality Kind
119
119
_≟-Kind_ strong strong = yes ≡.refl
120
120
_≟-Kind_ strong (other k) = no λ ()
121
121
_≟-Kind_ (other k) strong = no λ ()
Original file line number Diff line number Diff line change @@ -141,8 +141,8 @@ _≟-Clause_ : DecidableEquality Clause
141
141
_≟-Clauses_ : DecidableEquality Clauses
142
142
_≟_ : DecidableEquality Term
143
143
_≟-Sort_ : DecidableEquality Sort
144
- _≟-Patterns_ : Decidable (_≡_ {A = Args Pattern} )
145
- _≟-Pattern_ : Decidable (_≡_ {A = Pattern})
144
+ _≟-Patterns_ : DecidableEquality ( Args Pattern)
145
+ _≟-Pattern_ : DecidableEquality Pattern
146
146
147
147
-- Decidable equality 'transformers'
148
148
-- We need to inline these because the terms are not sized so
Original file line number Diff line number Diff line change @@ -17,7 +17,7 @@ open import Relation.Binary.Core using (Rel; REL; _=[_]⇒_)
17
17
open import Relation.Binary.Structures
18
18
using (IsPreorder; IsStrictPartialOrder; IsPartialOrder; IsDecStrictPartialOrder; IsDecPartialOrder; IsStrictTotalOrder; IsTotalOrder; IsDecTotalOrder)
19
19
open import Relation.Binary.Definitions
20
- using (Symmetric; Transitive; Reflexive; Asymmetric; Antisymmetric; Trichotomous; Total; Decidable; tri<; tri≈; tri>; _Respectsˡ_; _Respectsʳ_; _Respects_; _Respects₂_)
20
+ using (Symmetric; Transitive; Reflexive; Asymmetric; Antisymmetric; Trichotomous; Total; Decidable; DecidableEquality; tri<; tri≈; tri>; _Respectsˡ_; _Respectsʳ_; _Respects_; _Respects₂_)
21
21
open import Relation.Binary.Construct.Closure.Reflexive
22
22
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
23
23
import Relation.Binary.PropositionalEquality.Properties as ≡
@@ -78,7 +78,7 @@ module _ {_~_ : Rel A ℓ} where
78
78
... | tri≈ _ refl _ = inj₁ refl
79
79
... | tri> _ _ c = inj₂ [ c ]
80
80
81
- dec : Decidable {A = A} _≡_ → Decidable _~_ → Decidable _~ᵒ_
81
+ dec : DecidableEquality A → Decidable _~_ → Decidable _~ᵒ_
82
82
dec ≡-dec ~-dec a b = Dec.map ⊎⇔Refl (≡-dec a b ⊎-dec ~-dec a b)
83
83
84
84
decidable : Trichotomous _≡_ _~_ → Decidable _~ᵒ_
Original file line number Diff line number Diff line change @@ -19,7 +19,7 @@ open import Relation.Binary.Bundles
19
19
open import Relation.Binary.Structures
20
20
using (IsEquivalence; IsDecEquivalence; IsPreorder; IsPartialOrder)
21
21
open import Relation.Binary.Definitions
22
- using (Decidable; DecidableEquality)
22
+ using (DecidableEquality)
23
23
import Relation.Binary.Properties.Setoid as Setoid
24
24
open import Relation.Binary.PropositionalEquality.Core
25
25
open import Relation.Unary using (Pred)
@@ -157,7 +157,7 @@ isEquivalence = record
157
157
; trans = trans
158
158
}
159
159
160
- isDecEquivalence : Decidable _≡_ → IsDecEquivalence {A = A} _≡_
160
+ isDecEquivalence : DecidableEquality A → IsDecEquivalence _≡_
161
161
isDecEquivalence _≟_ = record
162
162
{ isEquivalence = isEquivalence
163
163
; _≟_ = _≟_
You can’t perform that action at this time.
0 commit comments