|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- For each `IsX` algebraic structure `S`, lift the structure to the |
| 5 | +-- 'pointwise' function space `A → S`: categorically, this is the |
| 6 | +-- *power* object in the relevant category of `X` objects and morphisms |
| 7 | +-- |
| 8 | +-- NB the module is parametrised only wrt `A` |
| 9 | +------------------------------------------------------------------------ |
| 10 | + |
| 11 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 12 | + |
| 13 | +module Algebra.Construct.Pointwise {a} (A : Set a) where |
| 14 | + |
| 15 | +open import Algebra.Bundles |
| 16 | +open import Algebra.Core using (Op₁; Op₂) |
| 17 | +open import Algebra.Structures |
| 18 | +open import Data.Product.Base using (_,_) |
| 19 | +open import Function.Base using (id; _∘′_; const) |
| 20 | +open import Level |
| 21 | +open import Relation.Binary.Core using (Rel) |
| 22 | +open import Relation.Binary.Bundles using (Setoid) |
| 23 | +open import Relation.Binary.Structures using (IsEquivalence) |
| 24 | + |
| 25 | + |
| 26 | +private |
| 27 | + |
| 28 | + variable |
| 29 | + c ℓ : Level |
| 30 | + C : Set c |
| 31 | + _≈_ : Rel C ℓ |
| 32 | + ε 0# 1# : C |
| 33 | + _⁻¹ -_ : Op₁ C |
| 34 | + _∙_ _+_ _*_ : Op₂ C |
| 35 | + |
| 36 | + lift₀ : C → A → C |
| 37 | + lift₀ = const |
| 38 | + |
| 39 | + lift₁ : Op₁ C → Op₁ (A → C) |
| 40 | + lift₁ = _∘′_ |
| 41 | + |
| 42 | + lift₂ : Op₂ C → Op₂ (A → C) |
| 43 | + lift₂ _∙_ g h x = (g x) ∙ (h x) |
| 44 | + |
| 45 | + liftRel : Rel C ℓ → Rel (A → C) (a ⊔ ℓ) |
| 46 | + liftRel _≈_ g h = ∀ {x} → (g x) ≈ (h x) |
| 47 | + |
| 48 | + |
| 49 | +------------------------------------------------------------------------ |
| 50 | +-- Setoid structure: here rather than elsewhere? (could be imported?) |
| 51 | + |
| 52 | +isEquivalence : IsEquivalence _≈_ → IsEquivalence (liftRel _≈_) |
| 53 | +isEquivalence isEquivalence = record |
| 54 | + { refl = λ {f x} → refl {f x} |
| 55 | + ; sym = λ f≈g → sym f≈g |
| 56 | + ; trans = λ f≈g g≈h → trans f≈g g≈h |
| 57 | + } |
| 58 | + where open IsEquivalence isEquivalence |
| 59 | + |
| 60 | +------------------------------------------------------------------------ |
| 61 | +-- Structures |
| 62 | + |
| 63 | +isMagma : IsMagma _≈_ _∙_ → IsMagma (liftRel _≈_) (lift₂ _∙_) |
| 64 | +isMagma isMagma = record |
| 65 | + { isEquivalence = isEquivalence M.isEquivalence |
| 66 | + ; ∙-cong = λ g h → M.∙-cong g h |
| 67 | + } |
| 68 | + where module M = IsMagma isMagma |
| 69 | + |
| 70 | +isSemigroup : IsSemigroup _≈_ _∙_ → IsSemigroup (liftRel _≈_) (lift₂ _∙_) |
| 71 | +isSemigroup isSemigroup = record |
| 72 | + { isMagma = isMagma M.isMagma |
| 73 | + ; assoc = λ f g h → M.assoc (f _) (g _) (h _) |
| 74 | + } |
| 75 | + where module M = IsSemigroup isSemigroup |
| 76 | + |
| 77 | +isBand : IsBand _≈_ _∙_ → IsBand (liftRel _≈_) (lift₂ _∙_) |
| 78 | +isBand isBand = record |
| 79 | + { isSemigroup = isSemigroup M.isSemigroup |
| 80 | + ; idem = λ f → M.idem (f _) |
| 81 | + } |
| 82 | + where module M = IsBand isBand |
| 83 | + |
| 84 | +isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_ → |
| 85 | + IsCommutativeSemigroup (liftRel _≈_) (lift₂ _∙_) |
| 86 | +isCommutativeSemigroup isCommutativeSemigroup = record |
| 87 | + { isSemigroup = isSemigroup M.isSemigroup |
| 88 | + ; comm = λ f g → M.comm (f _) (g _) |
| 89 | + } |
| 90 | + where module M = IsCommutativeSemigroup isCommutativeSemigroup |
| 91 | + |
| 92 | +isMonoid : IsMonoid _≈_ _∙_ ε → IsMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) |
| 93 | +isMonoid isMonoid = record |
| 94 | + { isSemigroup = isSemigroup M.isSemigroup |
| 95 | + ; identity = (λ f → M.identityˡ (f _)) , λ f → M.identityʳ (f _) |
| 96 | + } |
| 97 | + where module M = IsMonoid isMonoid |
| 98 | + |
| 99 | +isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε → |
| 100 | + IsCommutativeMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) |
| 101 | +isCommutativeMonoid isCommutativeMonoid = record |
| 102 | + { isMonoid = isMonoid M.isMonoid |
| 103 | + ; comm = λ f g → M.comm (f _) (g _) |
| 104 | + } |
| 105 | + where module M = IsCommutativeMonoid isCommutativeMonoid |
| 106 | + |
| 107 | +isGroup : IsGroup _≈_ _∙_ ε _⁻¹ → |
| 108 | + IsGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹) |
| 109 | +isGroup isGroup = record |
| 110 | + { isMonoid = isMonoid M.isMonoid |
| 111 | + ; inverse = (λ f → M.inverseˡ (f _)) , λ f → M.inverseʳ (f _) |
| 112 | + ; ⁻¹-cong = λ f → M.⁻¹-cong f |
| 113 | + } |
| 114 | + where module M = IsGroup isGroup |
| 115 | + |
| 116 | +isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹ → |
| 117 | + IsAbelianGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹) |
| 118 | +isAbelianGroup isAbelianGroup = record |
| 119 | + { isGroup = isGroup M.isGroup |
| 120 | + ; comm = λ f g → M.comm (f _) (g _) |
| 121 | + } |
| 122 | + where module M = IsAbelianGroup isAbelianGroup |
| 123 | + |
| 124 | +isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1# → |
| 125 | + IsSemiringWithoutAnnihilatingZero (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) |
| 126 | +isSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero = record |
| 127 | + { +-isCommutativeMonoid = isCommutativeMonoid M.+-isCommutativeMonoid |
| 128 | + ; *-cong = λ g h → M.*-cong g h |
| 129 | + ; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _) |
| 130 | + ; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _) |
| 131 | + ; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _) |
| 132 | + } |
| 133 | + where module M = IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero |
| 134 | + |
| 135 | +isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1# → |
| 136 | + IsSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) |
| 137 | +isSemiring isSemiring = record |
| 138 | + { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero M.isSemiringWithoutAnnihilatingZero |
| 139 | + ; zero = (λ f → M.zeroˡ (f _)) , λ f → M.zeroʳ (f _) |
| 140 | + } |
| 141 | + where module M = IsSemiring isSemiring |
| 142 | + |
| 143 | +isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# → |
| 144 | + IsRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#) |
| 145 | +isRing isRing = record |
| 146 | + { +-isAbelianGroup = isAbelianGroup M.+-isAbelianGroup |
| 147 | + ; *-cong = λ g h → M.*-cong g h |
| 148 | + ; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _) |
| 149 | + ; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _) |
| 150 | + ; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _) |
| 151 | + } |
| 152 | + where module M = IsRing isRing |
| 153 | + |
| 154 | + |
| 155 | +------------------------------------------------------------------------ |
| 156 | +-- Bundles |
| 157 | + |
| 158 | +magma : Magma c ℓ → Magma (a ⊔ c) (a ⊔ ℓ) |
| 159 | +magma m = record { isMagma = isMagma (Magma.isMagma m) } |
| 160 | + |
| 161 | +semigroup : Semigroup c ℓ → Semigroup (a ⊔ c) (a ⊔ ℓ) |
| 162 | +semigroup m = record { isSemigroup = isSemigroup (Semigroup.isSemigroup m) } |
| 163 | + |
| 164 | +band : Band c ℓ → Band (a ⊔ c) (a ⊔ ℓ) |
| 165 | +band m = record { isBand = isBand (Band.isBand m) } |
| 166 | + |
| 167 | +commutativeSemigroup : CommutativeSemigroup c ℓ → CommutativeSemigroup (a ⊔ c) (a ⊔ ℓ) |
| 168 | +commutativeSemigroup m = record { isCommutativeSemigroup = isCommutativeSemigroup (CommutativeSemigroup.isCommutativeSemigroup m) } |
| 169 | + |
| 170 | +monoid : Monoid c ℓ → Monoid (a ⊔ c) (a ⊔ ℓ) |
| 171 | +monoid m = record { isMonoid = isMonoid (Monoid.isMonoid m) } |
| 172 | + |
| 173 | +group : Group c ℓ → Group (a ⊔ c) (a ⊔ ℓ) |
| 174 | +group m = record { isGroup = isGroup (Group.isGroup m) } |
| 175 | + |
| 176 | +abelianGroup : AbelianGroup c ℓ → AbelianGroup (a ⊔ c) (a ⊔ ℓ) |
| 177 | +abelianGroup m = record { isAbelianGroup = isAbelianGroup (AbelianGroup.isAbelianGroup m) } |
| 178 | + |
| 179 | +semiring : Semiring c ℓ → Semiring (a ⊔ c) (a ⊔ ℓ) |
| 180 | +semiring m = record { isSemiring = isSemiring (Semiring.isSemiring m) } |
| 181 | + |
| 182 | +ring : Ring c ℓ → Ring (a ⊔ c) (a ⊔ ℓ) |
| 183 | +ring m = record { isRing = isRing (Ring.isRing m) } |
| 184 | + |
0 commit comments