diff --git a/src/Categories/Diagram/Pullback/Properties.agda b/src/Categories/Diagram/Pullback/Properties.agda index d72b824b..7a830b69 100644 --- a/src/Categories/Diagram/Pullback/Properties.agda +++ b/src/Categories/Diagram/Pullback/Properties.agda @@ -189,3 +189,96 @@ module IsoPb {X Y Z} {f : X ⇒ Z} {g : Y ⇒ Z} (pull₀ pull₁ : Pullback f g p₂-≈ : p₂ pull₁ ∘ P₀⇒P₁ ≈ p₂ pull₀ p₂-≈ = p₂∘universal≈h₂ pull₁ {eq = commute pull₀} + + +-- pasting law for pullbacks: +-- in a commutative diagram of the form +-- A -> B -> C +-- | | | +-- D -> E -> F +-- if the right square (BCEF) is a pullback, +-- then the left square (ABDE) is a pullback +-- iff the big square (ACDF) is a pullback. +module PullbackPastingLaw {A B C D E F : Obj} + {f : A ⇒ B} {g : B ⇒ C} {h : A ⇒ D} {i : B ⇒ E} {j : C ⇒ F} {k : D ⇒ E} {l : E ⇒ F} + (ABDE : i ∘ f ≈ k ∘ h) (BCEF : j ∘ g ≈ l ∘ i) (pbᵣ : IsPullback g i j l) where + + open IsPullback using (p₁∘universal≈h₁; p₂∘universal≈h₂; universal; unique-diagram) + + leftPullback⇒bigPullback : IsPullback f h i k → IsPullback (g ∘ f) h j (l ∘ k) + leftPullback⇒bigPullback pbₗ = record + { commute = ACDF + ; universal = universalb + ; p₁∘universal≈h₁ = [g∘f]∘universalb≈h₁ + ; p₂∘universal≈h₂ = p₂∘universal≈h₂ pbₗ + ; unique-diagram = unique-diagramb + } where + ACDF : j ∘ (g ∘ f) ≈ (l ∘ k) ∘ h + ACDF = begin + j ∘ g ∘ f ≈⟨ extendʳ BCEF ⟩ + l ∘ i ∘ f ≈⟨ pushʳ ABDE ⟩ + (l ∘ k) ∘ h ∎ + + -- first apply universal property of (BCEF) to get a morphism H -> B, + -- then apply universal property of (ABDE) to get a morphism H -> A. + universalb : {H : Obj} {h₁ : H ⇒ C} {h₂ : H ⇒ D} → j ∘ h₁ ≈ (l ∘ k) ∘ h₂ → H ⇒ A + universalb {_} {h₁} {h₂} eq = universal pbₗ (p₂∘universal≈h₂ pbᵣ {eq = j∘h₁≈l∘k∘h₂}) where + j∘h₁≈l∘k∘h₂ : j ∘ h₁ ≈ l ∘ k ∘ h₂ + j∘h₁≈l∘k∘h₂ = begin + j ∘ h₁ ≈⟨ eq ⟩ + (l ∘ k) ∘ h₂ ≈⟨ assoc ⟩ + l ∘ k ∘ h₂ ∎ + + [g∘f]∘universalb≈h₁ : {H : Obj} {h₁ : H ⇒ C} {h₂ : H ⇒ D} {eq : j ∘ h₁ ≈ (l ∘ k) ∘ h₂} → (g ∘ f) ∘ universalb eq ≈ h₁ + [g∘f]∘universalb≈h₁ {h₁ = h₁} = begin + (g ∘ f) ∘ universalb _ ≈⟨ pullʳ (p₁∘universal≈h₁ pbₗ) ⟩ + g ∘ universal pbᵣ _ ≈⟨ p₁∘universal≈h₁ pbᵣ ⟩ + h₁ ∎ + + unique-diagramb : {H : Obj} {s t : H ⇒ A} → (g ∘ f) ∘ s ≈ (g ∘ f) ∘ t → h ∘ s ≈ h ∘ t → s ≈ t + unique-diagramb {_} {s} {t} eq eq' = unique-diagram pbₗ (unique-diagram pbᵣ g∘f∘s≈g∘f∘t i∘f∘s≈i∘f∘t) eq' where + g∘f∘s≈g∘f∘t : g ∘ f ∘ s ≈ g ∘ f ∘ t + g∘f∘s≈g∘f∘t = begin + g ∘ f ∘ s ≈⟨ sym-assoc ⟩ + (g ∘ f) ∘ s ≈⟨ eq ⟩ + (g ∘ f) ∘ t ≈⟨ assoc ⟩ + g ∘ f ∘ t ∎ + i∘f∘s≈i∘f∘t : i ∘ f ∘ s ≈ i ∘ f ∘ t + i∘f∘s≈i∘f∘t = begin + i ∘ f ∘ s ≈⟨ pullˡ ABDE ⟩ + (k ∘ h) ∘ s ≈⟨ pullʳ eq' ⟩ + k ∘ h ∘ t ≈⟨ extendʳ (sym ABDE) ⟩ + i ∘ f ∘ t ∎ + + bigPullback⇒leftPullback : IsPullback (g ∘ f) h j (l ∘ k) → IsPullback f h i k + bigPullback⇒leftPullback pbb = record + { commute = ABDE + ; universal = universalₗ + ; p₁∘universal≈h₁ = f∘universalₗ≈h₁ + ; p₂∘universal≈h₂ = p₂∘universal≈h₂ pbb + ; unique-diagram = unique-diagramb + } where + universalₗ : {H : Obj} {h₁ : H ⇒ B} {h₂ : H ⇒ D} → i ∘ h₁ ≈ k ∘ h₂ → H ⇒ A + universalₗ {_} {h₁} {h₂} eq = universal pbb j∘g∘h₁≈[l∘k]∘h₂ where + j∘g∘h₁≈[l∘k]∘h₂ : j ∘ g ∘ h₁ ≈ (l ∘ k) ∘ h₂ + j∘g∘h₁≈[l∘k]∘h₂ = begin + j ∘ g ∘ h₁ ≈⟨ pullˡ BCEF ⟩ + (l ∘ i) ∘ h₁ ≈⟨ extendˡ eq ⟩ + (l ∘ k) ∘ h₂ ∎ + + f∘universalₗ≈h₁ : {H : Obj} {h₁ : H ⇒ B} {h₂ : H ⇒ D} {eq : i ∘ h₁ ≈ k ∘ h₂} → f ∘ universalₗ eq ≈ h₁ + f∘universalₗ≈h₁ {_} {h₁} {h₂} {eq} = unique-diagram pbᵣ g∘f∘universalₗ≈g∘h₁ i∘f∘universalₗ≈i∘h₁ where + g∘f∘universalₗ≈g∘h₁ : g ∘ f ∘ universalₗ _ ≈ g ∘ h₁ + g∘f∘universalₗ≈g∘h₁ = begin + g ∘ f ∘ universalₗ _ ≈⟨ sym-assoc ⟩ + (g ∘ f) ∘ universalₗ _ ≈⟨ p₁∘universal≈h₁ pbb ⟩ + g ∘ h₁ ∎ + i∘f∘universalₗ≈i∘h₁ : i ∘ f ∘ universalₗ _ ≈ i ∘ h₁ + i∘f∘universalₗ≈i∘h₁ = begin + i ∘ f ∘ universalₗ _ ≈⟨ pullˡ ABDE ⟩ + (k ∘ h) ∘ universalₗ _ ≈⟨ pullʳ (p₂∘universal≈h₂ pbb) ⟩ + k ∘ h₂ ≈⟨ sym eq ⟩ + i ∘ h₁ ∎ + + unique-diagramb : {H : Obj} {s t : H ⇒ A} → f ∘ s ≈ f ∘ t → h ∘ s ≈ h ∘ t → s ≈ t + unique-diagramb eq eq' = unique-diagram pbb (extendˡ eq) eq'