forked from Symphoria/Gecho
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_image.py
180 lines (151 loc) · 6.13 KB
/
test_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import time
import numpy as np
import tensorflow as tf
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def read_tensor_from_image_file(file_name, input_height=299, input_width=299,
input_mean=0, input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(file_reader, channels = 3,
name='png_reader')
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(tf.image.decode_gif(file_reader,
name='gif_reader'))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name='bmp_reader')
else:
image_reader = tf.image.decode_jpeg(file_reader, channels = 3,
name='jpeg_reader')
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0);
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
def load_labels(label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
def get_result():
file_name = "photo.jpg"
model_file = "tf_files/retrained_graph.pb"
label_file = "tf_files/retrained_labels.txt"
input_height = 224
input_width = 224
input_mean = 128
input_std = 128
input_layer = "input"
output_layer = "final_result"
graph = load_graph(model_file)
t = read_tensor_from_image_file(file_name,
input_height=input_height,
input_width=input_width,
input_mean=input_mean,
input_std=input_std)
input_name = "import/" + input_layer
output_name = "import/" + output_layer
input_operation = graph.get_operation_by_name(input_name);
output_operation = graph.get_operation_by_name(output_name);
with tf.Session(graph=graph) as sess:
start = time.time()
results = sess.run(output_operation.outputs[0],
{input_operation.outputs[0]: t})
end=time.time()
results = np.squeeze(results)
top_k = results.argsort()[-5:][::-1]
labels = load_labels(label_file)
print('\nEvaluation time (1-image): {:.3f}s\n'.format(end-start))
for i in top_k:
print(labels[i], results[i])
return labels[top_k[0]]
# if __name__ == "__main__":
# file_name = "tf_files/flower_photos/daisy/3475870145_685a19116d.jpg"
# model_file = "tf_files/retrained_graph.pb"
# label_file = "tf_files/retrained_labels.txt"
# input_height = 224
# input_width = 224
# input_mean = 128
# input_std = 128
# input_layer = "input"
# output_layer = "final_result"
# parser = argparse.ArgumentParser()
# parser.add_argument("--image", help="image to be processed")
# parser.add_argument("--graph", help="graph/model to be executed")
# parser.add_argument("--labels", help="name of file containing labels")
# parser.add_argument("--input_height", type=int, help="input height")
# parser.add_argument("--input_width", type=int, help="input width")
# parser.add_argument("--input_mean", type=int, help="input mean")
# parser.add_argument("--input_std", type=int, help="input std")
# parser.add_argument("--input_layer", help="name of input layer")
# parser.add_argument("--output_layer", help="name of output layer")
# args = parser.parse_args()
# if args.graph:
# model_file = args.graph
# if args.image:
# file_name = args.image
# if args.labels:
# label_file = args.labels
# if args.input_height:
# input_height = args.input_height
# if args.input_width:
# input_width = args.input_width
# if args.input_mean:
# input_mean = args.input_mean
# if args.input_std:
# input_std = args.input_std
# if args.input_layer:
# input_layer = args.input_layer
# if args.output_layer:
# output_layer = args.output_layer
# graph = load_graph(model_file)
# t = read_tensor_from_image_file(file_name,
# input_height=input_height,
# input_width=input_width,
# input_mean=input_mean,
# input_std=input_std)
# input_name = "import/" + input_layer
# output_name = "import/" + output_layer
# input_operation = graph.get_operation_by_name(input_name);
# output_operation = graph.get_operation_by_name(output_name);
# with tf.Session(graph=graph) as sess:
# start = time.time()
# results = sess.run(output_operation.outputs[0],
# {input_operation.outputs[0]: t})
# end=time.time()
# results = np.squeeze(results)
# top_k = results.argsort()[-5:][::-1]
# labels = load_labels(label_file)
# print('\nEvaluation time (1-image): {:.3f}s\n'.format(end-start))
# for i in top_k:
# print(labels[i], results[i])