-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver_convex.m
44 lines (35 loc) · 1.17 KB
/
solver_convex.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [x] = solver_convex(E, G, D, a)
% E -> Energy matrix
% G -> Graph matrix
% D -> Demand vector
% a -> Scalarization factor
S = size(E, 2); % sources
R = length(D); % receivers
%cvx_solver sedumi
cvx_begin quiet
variable x(R, S)
minimize(a*(sum((sum(E.*x,2)-D).^2)) + (1-a)*(sum(sum(1./exp(x./G))))) % In G a zero never occurs
subject to % -> Dijkstra returns 1 between direct links
0 <= x <= 1 % -> otherwise, use 1 + G
sum(x) <= 1
cvx_end
cost = abs(sum(sum(E.*x,2) - D));
fprintf('Solution cost: %d \n',cost)
% debug
% S = size(E, 2); % sources
% R = length(D); % receivers
%
% D = repmat(D, 1, S);
%
% a = 0.5;
% c = 0.5;
%
% %cvx_solver sedumi
% cvx_begin quiet
% variable x(R, S)
% minimize( a*(sum((sum(E.*x,2)-D(:,1)).^2)) + c*(sum(sum(1./exp(x./D)))) )
% subject to % -> Dijkstra returns 1 between direct links
% 0 <= x <= 1 % -> otherwise, use 1 + G
% sum(x) <= 1
% cvx_end
end