Skip to content

Latest commit

 

History

History
2837 lines (2664 loc) · 121 KB

CHANGELOG.md

File metadata and controls

2837 lines (2664 loc) · 121 KB

Changelog

Lastest releases: [0.5.3] - 2022-08-10 and [0.5.2] - 2022-06-08

[0.5.3] - 2022-08-10

Added

  • in mathcomp_extra.v:
    • lemma big_const_idem
    • lemma big_id_idem
    • lemma big_rem_AC
    • lemma bigD1_AC
    • lemma big_mkcond_idem
    • lemma big_split_idem
    • lemma big_id_idem_AC
    • lemma bigID_idem
    • lemmas bigmax_le and bigmax_lt
    • lemma bigmin_idr
    • lemma bigmax_idr
  • in file boolp.v:
    • lemmas iter_compl, iter_compr, iter0
  • in file functions.v:
    • lemmas oinv_iter, some_iter_inv, inv_iter,
    • Instances for functions interfaces for iter (partial inverse up to bijective function)
  • in classical_sets.v:
    • lemma preimage10P
    • lemma setT_unit
    • lemma subset_refl
  • in ereal.v:
    • notations _ < _ :> _ and _ <= _ :> _
    • lemmas lee01, lte01, lee0N1, lte0N1
    • lemmas lee_pmul2l, lee_pmul2r, lte_pmul, lee_wpmul2l
    • lemmas lee_lt_add, lee_lt_dadd, lee_paddl, lee_pdaddl, lte_paddl, lte_pdaddl, lee_paddr, lee_pdaddr, lte_paddr, lte_pdaddr
    • lemmas muleCA, muleAC, muleACA
  • in reals.v:
    • lemmas Rfloor_lt_int, floor_lt_int, floor_ge_int
    • lemmas ceil_ge_int, ceil_lt_int
  • in lebesgue_integral.v:
    • lemma ge0_emeasurable_fun_sum
    • lemma integrableMr

Changed

  • in ereal.v:
    • generalize lee_pmul
    • simplify lte_le_add, lte_le_dadd, lte_le_sub, lte_le_dsub
  • in measure.v:
    • generalize pushforward
  • in lebesgue_integral.v
    • change Arguments of eq_integrable
    • fix pretty-printing of {mfun _ >-> _}, {sfun _ >-> _}, {nnfun _ >-> _}
    • minor generalization of eq_measure_integral
  • from topology.v to mathcomp_extra.v:
    • generalize ltr_bigminr to porderType and rename to bigmin_lt
    • generalize bigminr_ler to orderType and rename to bigmin_le
  • moved out of module Bigminr in normedtype.v to mathcomp_extra.v and generalized to orderType:
    • lemma bigminr_ler_cond, renamed to bigmin_le_cond
  • moved out of module Bigminr in normedtype.v to mathcomp_extra.v:
    • lemma bigminr_maxr
  • moved from from module Bigminr in normedtype.v
    • to mathcomp_extra.v and generalized to orderType
      • bigminr_mkcond -> bigmin_mkcond
      • bigminr_split -> bigmin_split
      • bigminr_idl -> bigmin_idl
      • bigminrID -> bigminID
      • bigminrD1 -> bigminD1
      • bigminr_inf -> bigmin_inf
      • bigminr_gerP -> bigmin_geP
      • bigminr_gtrP -> bigmin_gtP
      • bigminr_eq_arg -> bigmin_eq_arg
      • eq_bigminr -> eq_bigmin
    • to topology.v and generalized to orderType
      • bigminr_lerP -> bigmin_leP
      • bigminr_ltrP -> bigmin_ltP
  • moved from topology.v to mathcomp_extra.v:
    • bigmax_lerP -> bigmax_leP
    • bigmax_ltrP -> bigmax_ltP
    • ler_bigmax_cond -> le_bigmax_cond
    • ler_bigmax -> le_bigmax
    • le_bigmax -> homo_le_bigmax

Renamed

  • in ereal.v:
    • lee_pinfty_eq -> leye_eq
    • lee_ninfty_eq -> leeNy_eq
  • in classical_sets.v:
    • set_bool -> setT_bool
  • in topology.v:
    • bigmax_gerP -> bigmax_geP
    • bigmax_gtrP -> bigmax_gtP
  • in lebesgue_integral.v:
    • emeasurable_funeM -> measurable_funeM

Removed

  • in topology.v:
    • bigmax_seq1, bigmax_pred1_eq, bigmax_pred1
  • in normedtype.v (module Bigminr)
    • bigminr_ler_cond, bigminr_ler.
    • bigminr_seq1, bigminr_pred1_eq, bigminr_pred1

Misc

  • file ereal.v split in two files constructive_ereal.v and ereal.v (the latter exports the former, so the "Require Import ereal" can just be kept unchanged)

[0.5.2] - 2022-07-08

Added

  • in file classical_sets.v
    • lemma set_bool
    • lemma supremum_out
    • definition isLub
    • lemma supremum1
    • lemma trivIset_set0
    • lemmas trivIset_image, trivIset_comp
    • notation trivIsets
  • in file topology.v:
    • definition near_covering
    • lemma compact_near_coveringP
    • lemma continuous_localP, equicontinuous_subset_id
    • lemmas precompact_pointwise_precompact, precompact_equicontinuous, Ascoli
    • definition frechet_filter, instances frechet_properfilter, and frechet_properfilter_nat
    • definition principal_filter discrete_space
    • lemma principal_filterP, principal_filter_proper, principal_filter_ultra
    • canonical bool_discrete_filter
    • lemma compactU
    • lemma discrete_sing, discrete_nbhs, discrete_open, discrete_set1, discrete_closed, discrete_cvg, discrete_hausdorff
    • canonical bool_discrete_topology
    • definition discrete_topological_mixin
    • lemma discrete_bool, bool_compact
  • in Rstruct.v:
    • lemmas Rsupremums_neq0, Rsup_isLub, Rsup_ub
  • in reals.v:
    • lemma floor_natz
    • lemma opp_set_eq0, ubound0, lboundT
  • in file lebesgue_integral.v:
    • lemma integrable0
    • mixins isAdditiveMeasure, isMeasure0, isMeasure, isOuterMeasure
    • structures AdditiveMeasure, Measure, OuterMeasure
    • notations additive_measure, measure, outer_measure
    • definition mrestr
    • lemmas integral_measure_sum_nnsfun, integral_measure_add_nnsfun
    • lemmas ge0_integral_measure_sum, integral_measure_add, integral_measure_series_nnsfun, ge0_integral_measure_series
    • lemmas integrable_neg_fin_num, integrable_pos_fin_num
    • lemma integral_measure_series
    • lemmas counting_dirac, summable_integral_dirac, integral_count
    • lemmas integrable_abse, integrable_summable, integral_bigcup
  • in measure.v:
    • lemmas additive_measure_snum_subproof, measure_snum_subproof
    • canonicals additive_measure_snum, measure_snum
    • definition mscale
    • definition restr
    • definition counting, canonical measure_counting
    • definition discrete_measurable, instantiated as a measurableType
    • lemma sigma_finite_counting
    • lemma msum_mzero
  • in lebesgue_measure.v:
    • lemma diracE
    • notation _.-ocitv
    • definition ocitv_display
  • in file cardinality.v:
    • lemmas trivIset_sum_card, fset_set_sub, fset_set_set0
  • in file sequences.v:
    • lemmas nat_dvg_real, nat_cvgPpinfty, nat_nondecreasing_is_cvg
    • definition nseries, lemmas le_nseries, cvg_nseries_near, dvg_nseries
  • in file ereal.v:
    • lemma fin_num_abs
  • in file esum.v:
    • definition summable
    • lemmas summable_pinfty, summableE, summableD, summableN, summableB, summable_funepos, summable_funeneg
    • lemmas summable_fine_sum, summable_cvg, summable_nneseries_lim, summable_nnseries, summable_nneseries_esum, esumB
    • lemma fsbig_esum
  • in trigo.v:
    • lemmas cos1_gt0, pi_ge2
    • lemmas pihalf_ge1, pihalf_lt2
  • in measure.v:
    • inductive measure_display
    • notation _.-sigma, _.-sigma.-measurable, _.-ring, _.-ring.-measurable, _.-cara, _.-cara.-measurable, _.-caratheodory, _.-prod. _.-prod.-measurable
    • notation _.-measurable
    • lemma measure_semi_additive_ord, measure_semi_additive_ord_I
    • lemma decomp_finite_set
  • in functions.v:
    • lemma patch_pred, trivIset_restr
  • has_sup1, has_inf1 moved from reals.v to classical_sets.v

Changed

  • in topology.v:
    • generalize cluster_cvgE, fam_cvgE, ptws_cvg_compact_family
    • rewrite equicontinuous and pointwise_precompact to use index
  • in Rstruct.v:
    • statement of lemma completeness', renamed to Rcondcomplete
    • statement of lemma real_sup_adherent
  • in ereal.v:
    • statements of lemmas ub_ereal_sup_adherent, lb_ereal_inf_adherent
  • in reals.v:
    • definition sup
    • statements of lemmas sup_adherent, inf_adherent
  • in sequences.v:
    • generalize eq_nneseries, nneseries0
  • in mathcomp_extra.v:
    • generalize card_fset_sum1
  • in lebesgue_integral.v:
    • change the notation \int_
    • product_measure1 takes a proof that the second measure is sigma-finite
    • product_measure2 takes a proof that the first measure is sigma-finite
    • definitions integral and integrable now take a function instead of a measure
    • remove one space in notation \d_
    • generalize nondecreasing_series
    • constant measurableType now take an addititional parameter of type measure_display
  • in measure.v:
    • measure0 is now a lemma
    • statement of lemmas content_fin_bigcup, measure_fin_bigcup, ring_fsets, decomp_triv, cover_decomp, decomp_set0, decompN0, Rmu_fin_bigcup
    • definitions decomp, measure
    • several constants now take a parameter of type measure_display
  • in trigo.v:
    • lemma cos_exists
  • in set_interval.v:
    • generalize to numDomainType:
      • mem_1B_itvcc, conv, conv_id, convEl, convEr, conv10, conv0, conv1, conv_sym, conv_flat, leW_conv, factor, leW_factor, factor_flat, factorl, ndconv, ndconvE
    • generalize to numFieldType
      • factorr, factorK, convK, conv_inj, factor_inj, conv_bij, factor_bij, le_conv, le_factor, lt_conv, lt_factor, conv_itv_bij, factor_itv_bij, mem_conv_itv, mem_conv_itvcc, range_conv, range_factor
    • generalize to realFieldType:
      • mem_factor_itv
  • in fsbig.v:
    • generalize exchange_fsum
  • lemma preimage_cst generalized and moved from lebesgue_integral.v to functions.v
  • lemma fset_set_image moved from measure.v to cardinality.v
  • in reals.v:
    • type generalization of has_supPn

Renamed

  • in lebesgue_integral.v:
    • integralK -> integralrM
  • in trigo.v:
    • cos_pihalf_uniq -> cos_02_uniq
  • in measure.v:
    • sigma_algebraD -> sigma_algebraCD
    • g_measurable -> salgebraType
    • g_measurable_eqType -> salgebraType_eqType
    • g_measurable_choiceType -> salgebraType_choiceType
    • g_measurable_ptType -> salgebraType_ptType
  • in lebesgue_measure.v:
    • itvs -> ocitv_type
    • measurable_fun_sum -> emeasurable_fun_sum
  • in classical_sets.v:
    • trivIset_restr -> trivIset_widen
    • supremums_set1 -> supremums1
    • infimums_set1 -> infimums1

Removed

  • in Rstruct.v:
    • definition real_sup
    • lemma real_sup_is_lub, real_sup_ub, real_sup_out
  • in reals.v:
    • field sup from mixin_of in module Real
  • in measure.v:
    • notations [additive_measure _ -> _], [measure _ -> _], [outer_measure _ -> _ ],
    • lemma measure_is_additive_measure
    • definitions caratheodory_measure_mixin, caratheodory_measure
    • coercions measure_to_nadditive_measure, measure_additive_measure
    • canonicals measure_additive_measure, set_ring_measure, outer_measure_of_measure, Hahn_ext_measure
    • lemma Rmu0
    • lemma measure_restrE
  • in measure.v:
    • definition g_measurableType
    • notation mu.-measurable

[0.5.1] - 2022-06-04

Added

  • in mathcomp_extra.v:
    • lemma card_fset_sum1
  • in classical_sets.v:
    • lemma preimage_setT
    • lemma bigsetU_bigcup
    • lemmas setI_II and setU_II
  • in topology.v:
    • definition powerset_filter_from
    • globals powerset_filter_from_filter
    • lemmas near_small_set, small_set_sub
    • lemmas withinET, closureEcvg, entourage_sym, fam_nbhs
    • generalize cluster_cvgE, ptws_cvg_compact_family
    • lemma near_compact_covering
    • rewrite equicontinuous and pointwise_precompact to use index
    • lemmas ptws_cvg_entourage, equicontinuous_closure, ptws_compact_cvg ptws_compact_closed, ascoli_forward, compact_equicontinuous
  • in normedtype.v:
    • definition bigcup_ointsub
    • lemmas bigcup_ointsub0, open_bigcup_ointsub, is_interval_bigcup_ointsub, bigcup_ointsub_sub, open_bigcup_rat
    • lemmas mulrl_continuous and mulrr_continuous.
  • in ereal.v:
    • definition expe with notation ^+
    • definition enatmul with notation *+ (scope %E)
    • definition ednatmul with notation *+ (scope %dE)
    • lemmas fineM, enatmul_pinfty, enatmul_ninfty, EFin_natmul, mule2n, expe2, mule_natl
    • lemmas ednatmul_pinfty, ednatmul_ninfty, EFin_dnatmul, dmule2n, ednatmulE, dmule_natl
    • lemmas sum_fin_num, sum_fin_numP
    • lemmas oppeB, doppeB, fineB, dfineB
    • lemma abse1
    • lemma ltninfty_adde_def
  • in esum.v:
    • lemma esum_set1
    • lemma nnseries_interchange
  • in cardinality.v:
    • lemma fset_set_image, card_fset_set, geq_card_fset_set, leq_card_fset_set, infinite_set_fset, infinite_set_fsetP and fcard_eq.
  • in sequences.v:
    • lemmas nneseriesrM, ereal_series_cond, ereal_series, nneseries_split
    • lemmas lee_nneseries
  • in numfun.v:
    • lemma restrict_lee
  • in measure.v:
    • definition pushforward and canonical pushforward_measure
    • definition dirac with notation \d_ and canonical dirac_measure
    • lemmas finite_card_dirac, infinite_card_dirac
    • lemma eq_measure
    • definition msum and canonical measure_sum'
    • definition mzero and canonical measure_zero'
    • definition measure_add and lemma measure_addE
    • definition mseries and canonical measure_series'
  • in set_interval.v:
    • lemma opp_itv_infty_bnd
  • in lebesgue_integral.v:
    • lemmas integral_set0, ge0_integral_bigsetU, ge0_integral_bigcup
  • in lebesgue_measure.v:
    • lemmas is_interval_measurable, open_measurable, continuous_measurable_fun
    • lemma emeasurable_funN
    • lemmas itv_bnd_open_bigcup, itv_bnd_infty_bigcup, itv_infty_bnd_bigcup, itv_open_bnd_bigcup
    • lemma lebesgue_measure_set1
    • lemma lebesgue_measure_itv
    • lemma lebesgue_measure_rat
  • in lebesgue_integral.v:
    • lemmas integralM_indic, integralM_indic_nnsfun, integral_dirac
    • lemma integral_measure_zero
    • lemma eq_measure_integral

Changed

  • in mathcomp_extra.v:
    • generalize card_fset_sum1
  • in classical_sets.v:
    • lemma some_bigcup generalized and renamed to image_bigcup
  • in esumv:
    • remove one hypothesis in lemmas reindex_esum, esum_image
  • moved from lebesgue_integral.v to lebesgue_measure.v and generalized
    • hint measurable_set1/emeasurable_set1
  • in sequences.v:
    • generalize eq_nneseries, nneseries0
  • in set_interval.v:
    • generalize opp_itvoo to opp_itv_bnd_bnd
  • in lebesgue_integral.v:
    • change the notation \int_

Renamed

  • in ereal.v:
    • num_abs_le -> num_abse_le
    • num_abs_lt -> num_abse_lt
    • addooe -> addye
    • addeoo -> addey
    • mule_ninfty_pinfty -> mulNyy
    • mule_pinfty_ninfty -> mulyNy
    • mule_pinfty_pinfty -> mulyy
    • mule_ninfty_ninfty -> mulNyNy
    • lte_0_pinfty -> lt0y
    • lte_ninfty_0 -> ltNy0
    • lee_0_pinfty -> le0y
    • lee_ninfty_0 -> leNy0
    • lte_pinfty -> ltey
    • lte_ninfty -> ltNye
    • lee_pinfty -> leey
    • lee_ninfty -> leNye
    • mulrpinfty_real -> real_mulry
    • mulpinftyr_real -> real_mulyr
    • mulrninfty_real -> real_mulrNy
    • mulninftyr_real -> real_mulNyr
    • mulrpinfty -> mulry
    • mulpinftyr -> mulyr
    • mulrninfty -> mulrNy
    • mulninftyr -> mulNyr
    • gt0_mulpinfty -> gt0_mulye
    • lt0_mulpinfty -> lt0_mulye
    • gt0_mulninfty -> gt0_mulNye
    • lt0_mulninfty -> lt0_mulNye
    • maxe_pinftyl -> maxye
    • maxe_pinftyr -> maxey
    • maxe_ninftyl -> maxNye
    • maxe_ninftyr -> maxeNy
    • mine_ninftyl -> minNye
    • mine_ninftyr -> mineNy
    • mine_pinftyl -> minye
    • mine_pinftyr -> miney
    • mulrinfty_real -> real_mulr_infty
    • mulrinfty -> mulr_infty
  • in realfun.v:
    • exp_continuous -> exprn_continuous
  • in sequences.v:
    • ereal_pseriesD -> nneseriesD
    • ereal_pseries0 -> nneseries0
    • ereal_pseries_pred0 -> nneseries_pred0
    • eq_ereal_pseries -> eq_nneseries
    • ereal_pseries_sum_nat -> nneseries_sum_nat
    • ereal_pseries_sum -> nneseries_sum
    • ereal_pseries_mkcond -> nneseries_mkcond
    • ereal_nneg_series_lim_ge -> nneseries_lim_ge
    • is_cvg_ereal_nneg_series_cond -> is_cvg_nneseries_cond
    • is_cvg_ereal_nneg_series -> is_cvg_nneseries
    • ereal_nneg_series_lim_ge0 -> nneseries_lim_ge0
    • adde_def_nneg_series -> adde_def_nneseries
  • in esum.v:
    • ereal_pseries_esum -> nneseries_esum
  • in numfun.v:
    • funenng -> funepos
    • funennp -> funeneg
    • funenng_ge0 -> funepos_ge0
    • funennp_ge0 -> funeneg_ge0
    • funenngN -> funeposN
    • funennpN -> funenegN
    • funenng_restrict -> funepos_restrict
    • funennp_restrict -> funeneg_restrict
    • ge0_funenngE -> ge0_funeposE
    • ge0_funennpE -> ge0_funenegE
    • le0_funenngE -> le0_funeposE
    • le0_funennpE -> le0_funenegE
    • gt0_funenngM -> gt0_funeposM
    • gt0_funennpM -> gt0_funenegM
    • lt0_funenngM -> lt0_funeposM
    • lt0_funennpM -> lt0_funenegM
    • funenngnnp -> funeposneg
    • add_def_funennpg -> add_def_funeposneg
    • funeD_Dnng -> funeD_Dpos
    • funeD_nngD -> funeD_posD
  • in lebesgue_measure.v:
    • emeasurable_fun_funenng -> emeasurable_fun_funepos
    • emeasurable_fun_funennp -> emeasurable_fun_funeneg
  • in lebesgue_integral.v:
    • integrable_funenng -> integrable_funepos
    • integrable_funennp -> integrable_funeneg
    • integral_funennp_lt_pinfty -> integral_funeneg_lt_pinfty
    • integral_funenng_lt_pinfty -> integral_funepos_lt_pinfty
    • ae_eq_funenng_funennp -> ae_eq_funeposneg

Removed

  • in mathcomp_extra.v:
    • lemmas natr_absz, ge_pinfty, le_ninfty, gt_pinfty, lt_ninfty
  • in classical_sets.v:
    • notation [set of _]
  • in topology.v:
    • lemmas inj_can_sym_in_on, inj_can_sym_on, inj_can_sym_in

[0.5.0] - 2022-03-23

Added

  • in signed.v:
    • notations %:nngnum and %:posnum
  • in ereal.v:
    • notations {posnum \bar R} and {nonneg \bar R}
    • notations %:pos and %:nng in ereal_dual_scope and ereal_scope
    • variants posnume_spec and nonnege_spec
    • definitions posnume, nonnege, abse_reality_subdef, ereal_sup_reality_subdef, ereal_inf_reality_subdef
    • lemmas ereal_comparable, pinfty_snum_subproof, ninfty_snum_subproof, EFin_snum_subproof, fine_snum_subproof, oppe_snum_subproof, adde_snum_subproof, dadde_snum_subproof, mule_snum_subproof, abse_reality_subdef, abse_snum_subproof, ereal_sup_snum_subproof, ereal_inf_snum_subproof, num_abse_eq0, num_lee_maxr, num_lee_maxl, num_lee_minr, num_lee_minl, num_lte_maxr, num_lte_maxl, num_lte_minr, num_lte_minl, num_abs_le, num_abs_lt, posnumeP, nonnegeP
    • signed instances pinfty_snum, ninfty_snum, EFin_snum, fine_snum, oppe_snum, adde_snum, dadde_snum, mule_snum, abse_snum, ereal_sup_snum, ereal_inf_snum

Changed

  • in functions.v:
    • addrfunE renamed to addrfctE and generalized to Type, zmodType
    • opprfunE renamed to opprfctE and generalized to Type, zmodType
  • moved from functions.v to classical_sets.v
    • lemma subsetW, definition subsetCW
  • in mathcomp_extra.v:
    • fix notation ltLHS

Renamed

  • in topology.v:
    • open_bigU -> bigcup_open
  • in functions.v:
    • mulrfunE -> mulrfctE
    • scalrfunE -> scalrfctE
    • exprfunE -> exprfctE
    • valLr -> valR
    • valLr_fun -> valR_fun
    • valLrK -> valRK
    • oinv_valLr -> oinv_valR
    • valLr_inj_subproof -> valR_inj_subproof
    • valLr_surj_subproof -> valR_surj_subproof
  • in measure.v:
    • measurable_bigcup -> bigcupT_measurable
    • measurable_bigcap -> bigcapT_measurable
    • measurable_bigcup_rat -> bigcupT_measurable_rat
  • in lebesgue_measure.v:
    • emeasurable_bigcup -> bigcupT_emeasurable

Removed

  • files posnum.v and nngnum.v (both subsumed by signed.v)
  • in topology.v:
    • ltr_distlC, ler_distlC

[0.4.0] - 2022-03-08

Added

  • in mathcomp_extra.v:
    • lemma all_sig2_cond
    • definition olift
    • lemmas obindEapp, omapEbind, omapEapp, oappEmap, omap_comp, oapp_comp, oapp_comp_f, olift_comp, compA, can_in_pcan, pcan_in_inj, can_in_comp, pcan_in_comp, ocan_comp, pred_omap, ocan_in_comp, eqbLR, eqbRL
    • definition opp_fun, notation \-
    • definition mul_fun, notation \*
    • definition max_fun, notation \max
    • lemmas gtr_opp, le_le_trans
    • notations eqLHS, eqRHS, leLHS, leRHS, ltLHS, lrRHS
    • inductive boxed
    • lemmas eq_big_supp, perm_big_supp_cond, perm_big_supp
    • lemmma mulr_ge0_gt0
    • lemmas lt_le, gt_ge
    • coercion pair_of_interval
    • lemmas ltBSide, leBSide
    • multirule lteBSide
    • lemmas ltBRight_leBLeft, leBRight_ltBLeft
    • multirule bnd_simp
    • lemmas itv_splitU1, itv_split1U
    • definition miditv
    • lemmas mem_miditv, miditv_bnd2, miditv_bnd1
    • lemmas predC_itvl, predC_itvr, predC_itv
  • in boolp.v:
    • lemmas cid2, propeqP, funeqP, funeq2P, funeq3P, predeq2P, predeq3P
    • hint Prop_irrelevance
    • lemmas pselectT, eq_opE
    • definition classicType, canonicals classicType_eqType, classicType_choiceType, notation {classic ...}
    • definition eclassicType, canonicals eclassicType_eqType, eclassicType_choiceType, notation {eclassic ...}
    • definition canonical_of, notations canonical_, canonical, lemma canon
    • lemmas Peq, Pchoice, eqPchoice
    • lemmas contra_notT, contraPT, contraTP, contraNP, contraNP, contra_neqP, contra_eqP
    • lemmas forallPNP, existsPNP
    • module FunOrder, lemma lefP
    • lemmas meetfE and joinfE
  • in classical_sets.v:
    • notations [set: ...], *`, `*
    • definitions setMR and setML, disj_set
    • coercion set_type, definition SigSub
    • lemmas set0fun, set_mem, mem_setT, mem_setK, set_memK, memNset, setTPn, in_set0, in_setT, in_setC, in_setI, in_setD, in_setU, in_setM, set_valP, set_true, set_false, set_andb, set_orb, fun_true, fun_false, set_mem_set, mem_setE, setDUK, setDUK, setDKU, setUv, setIv, setvU, setvI, setUCK, setUKC, setICK, setIKC, setDIK, setDKI, setI1, set1I, subsetT, disj_set2E, disj_set2P, disj_setPS, disj_set_sym, disj_setPCl, disj_setPCr, disj_setPLR, disj_setPRL, setF_eq0, subsetCl, subsetCr, subsetC2, subsetCP, subsetCPl, subsetCPr, subsetUl, subsetUr, setDidl, subIsetl, subIsetr, subDsetl, subDsetr setUKD, setUDK, setUIDK, bigcupM1l, bigcupM1r, pred_omapE, pred_omap_set
    • hints subsetUl, subsetUr, subIsetl, subIsetr, subDsetl, subDsetr
    • lemmas image2E
    • lemmas Iiota, ordII, IIord, ordIIK, IIordK
    • lemmas set_imfset, imageT
    • hints imageP, imageT
    • lemmas homo_setP, image_subP, image_sub, subset_set2
    • lemmas eq_preimage, comp_preimage, preimage_id, preimage_comp, preimage_setI_eq0, preimage0eq, preimage0, preimage10,
    • lemmas some_set0, some_set1, some_setC, some_setR, some_setI, some_setU, some_setD, sub_image_some, sub_image_someP, image_some_inj, some_set_eq0, some_preimage, some_image, disj_set_some
    • lemmas some_bigcup, some_bigcap, bigcup_set_type, bigcup_mkcond, bigcup_mkcondr, bigcup_mkcondl, bigcap_mkcondr, bigcap_mkcondl, bigcupDr, setD_bigcupl, bigcup_bigcup_dep, bigcup_bigcup, bigcupID. bigcapID
    • lemmas bigcup2inE, bigcap2, bigcap2E, bigcap2inE
    • lemmas bigcup_sub, sub_bigcap, subset_bigcup, subset_bigcap, bigcap_set_type, bigcup_pred
    • lemmas bigsetU_bigcup2, bigsetI_bigcap2
    • lemmas in1TT, in2TT, in3TT, inTT_bij
    • canonical option_pointedType
    • notations [get x | E], [get x : T | E]
    • variant squashed, notation $| ... |, tactic notation squash
    • definition unsquash, lemma unsquashK
    • module Empty that declares the type emptyType with the expected [emptyType of ...] notations
    • canonicals False_emptyType and void_emptyType
    • definitions no and any
    • lemmas empty_eq0
    • definition quasi_canonical_of, notations quasi_canonical_, quasi_canonical, lemma qcanon
    • lemmas choicePpointed, eqPpointed, Ppointed
    • lemmas trivIset_setIl, trivIset_setIr, sub_trivIset, trivIset_bigcup2
    • definition smallest
    • lemmas sub_smallest, smallest_sub, smallest_id
    • lemma and hint sub_gen_smallest
    • lemmas sub_smallest2r, sub_smallest2l
    • lemmas preimage_itv, preimage_itv_o_infty, preimage_itv_c_infty, preimage_itv_infty_o, preimage_itv_infty_c, notin_setI_preimage
    • definitions xsection, ysection
    • lemmas xsection0, ysection0, in_xsectionM, in_ysectionM, notin_xsectionM, notin_ysectionM, xsection_bigcup, ysection_bigcup, trivIset_xsection, trivIset_ysection, le_xsection, le_ysection, xsectionD, ysectionD
  • in topology.v:
    • lemma filter_pair_set
    • definition prod_topo_apply
    • lemmas prod_topo_applyE, prod_topo_apply_continuous, hausdorff_product
    • lemmas closedC, openC
    • lemmas continuous_subspace_in
    • lemmasclosed_subspaceP, closed_subspaceW, closure_subspaceW
    • lemmas nbhs_subspace_subset, continuous_subspaceW, nbhs_subspaceT, continuous_subspaceT_for, continuous_subspaceT, continuous_open_subspace
    • globals subspace_filter, subspace_proper_filter
    • notation {within ..., continuous ...}
    • definitions compact_near, precompact, locally_compact
    • lemmas precompactE, precompact_subset, compact_precompact, precompact_closed
    • definitions singletons, equicontinuous, pointwise_precompact
    • lemmas equicontinuous_subset, equicontinuous_cts
    • lemmas pointwise_precomact_subset, pointwise_precompact_precompact uniform_pointwise_compact, compact_pointwise_precompact
    • lemmas compact_set1, uniform_set1, ptws_cvg_family_singleton, ptws_cvg_compact_family
    • lemmas connected1, connectedU
    • lemmas connected_component_sub, connected_component_id, connected_component_out, connected_component_max, connected_component_refl, connected_component_cover, connected_component_cover, connected_component_trans, same_connected_component
    • lemma continuous_is_cvg
    • lemmas uniform_limit_continuous, uniform_limit_continuous_subspace
  • in normedtype.v
    • generalize IVT with subspace topology
    • lemmas abse_continuous, cvg_abse, is_cvg_abse, EFin_lim, near_infty_natSinv_expn_lt
  • in reals.v:
    • lemmas sup_gt, inf_lt, ltr_add_invr
  • in ereal.v:
    • lemmas esum_ninftyP, esum_pinftyP
    • lemmas addeoo, daddeoo
    • lemmas desum_pinftyP, desum_ninftyP
    • lemmas lee_pemull, lee_nemul, lee_pemulr, lee_nemulr
    • lemma fin_numM
    • definition mule_def, notation x *? y
    • lemma mule_defC
    • notations \* in ereal_scope, and ereal_dual_scope
    • lemmas mule_def_fin, mule_def_neq0_infty, mule_def_infty_neq0, neq0_mule_def
    • notation \- in ereal_scope and ereal_dual_scope
    • lemma fin_numB
    • lemmas mule_eq_pinfty, mule_eq_ninfty
    • lemmas fine_eq0, abse_eq0
    • lemmas EFin_inj, EFin_bigcup, EFin_setC, adde_gt0, mule_ge0_gt0, lte_mul_pinfty, lt0R, adde_defEninfty, lte_pinfty_eq, ge0_fin_numE, eq_pinftyP,
    • canonical mule_monoid
    • lemmas preimage_abse_pinfty, preimage_abse_ninfty
    • notation \-
    • lemmas fin_numEn, fin_numPn, oppe_eq0, ltpinfty_adde_def, gte_opp, gte_dopp, gt0_mulpinfty, lt0_mulpinfty, gt0_mulninfty, lt0_mulninfty, eq_infty, eq_ninfty, hasNub_ereal_sup, ereal_sup_EFin, ereal_inf_EFin, restrict_abse
    • canonical ereal_pointed
    • lemma seq_psume_eq0
    • lemmas lte_subl_addl, lte_subr_addl, lte_subel_addr, lte_suber_addr, lte_suber_addl, lee_subl_addl, lee_subr_addl, lee_subel_addr, lee_subel_addl, lee_suber_addr, lee_suber_addl
    • lemmas lte_dsubl_addl, lte_dsubr_addl, lte_dsubel_addr, lte_dsuber_addr, lte_dsuber_addl, lee_dsubl_addl, lee_dsubr_addl, lee_dsubel_addr, lee_dsubel_addl, lee_dsuber_addr, lee_dsuber_addl
    • lemmas realDe, realDed, realMe, nadde_eq0, padde_eq0, adde_ss_eq0, ndadde_eq0, pdadde_eq0, dadde_ss_eq0, mulrpinfty_real, mulpinftyr_real, mulrninfty_real, mulninftyr_real, mulrinfty_real
  • in sequences.v:
    • lemmas ereal_cvgM_gt0_pinfty, ereal_cvgM_lt0_pinfty, ereal_cvgM_gt0_ninfty, ereal_cvgM_lt0_ninfty, ereal_cvgM
    • definition eseries with notation [eseries E]_n
      • lemmas eseriesEnat, eseriesEord, eseriesSr, eseriesS, eseriesSB, eseries_addn, sub_eseries_geq, sub_eseries, sub_double_eseries, eseriesD
    • definition etelescope
    • lemmas ereal_cvgB, nondecreasing_seqD, lef_at
    • lemmas lim_mkord, ereal_pseries_mkcond, ereal_pseries_sum
    • definition sdrop
    • lemmas has_lbound_sdrop, has_ubound_sdrop
    • definitions sups, infs
    • lemmas supsN, infsN, nonincreasing_sups, nondecreasing_infs, is_cvg_sups, is_cvg_infs, infs_le_sups, cvg_sups_inf, cvg_infs_sup, sups_preimage, infs_preimage, bounded_fun_has_lbound_sups, bounded_fun_has_ubound_infs
    • definitions lim_sup, lim_inf
    • lemmas lim_infN, lim_supE, lim_infE, lim_inf_le_lim_sup, cvg_lim_inf_sup, cvg_lim_infE, cvg_lim_supE, cvg_sups, cvg_infs, le_lim_supD, le_lim_infD, lim_supD, lim_infD
    • definitions esups, einfs
    • lemmas esupsN, einfsN, nonincreasing_esups, nondecreasing_einfs, einfs_le_esups, cvg_esups_inf, is_cvg_esups, cvg_einfs_sup, is_cvg_einfs, esups_preimage, einfs_preimage
    • definitions elim_sup, elim_inf
    • lemmas elim_infN, elim_supN, elim_inf_sup, elim_inf_sup, cvg_ninfty_elim_inf_sup, cvg_ninfty_einfs, cvg_ninfty_esups, cvg_pinfty_einfs, cvg_pinfty_esups, cvg_esups, cvg_einfs, cvg_elim_inf_sup, is_cvg_elim_infE, is_cvg_elim_supE
    • lemmas elim_inf_shift, elim_sup_le_cvg
  • in derive.v
    • lemma MVT_segment
    • lemma derive1_cst
  • in realfun.v:
    • lemma continuous_subspace_itv
  • in esum.v (was csum.v):
    • lemmas sum_fset_set, esum_ge, esum0, le_esum, eq_esum, esumD, esum_mkcond, esum_mkcondr, esum_mkcondl, esumID, esum_sum, esum_esum, lee_sum_fset_nat, lee_sum_fset_lim, ereal_pseries_esum, reindex_esum, esum_pred_image, esum_set_image, esum_bigcupT
  • in cardinality.v:
    • notations #>=, #=, #!=
    • scope card_scope, delimiter card
    • notation infinite_set
    • lemmas injPex, surjPex, bijPex, surjfunPex, injfunPex
    • lemmas inj_card_le, pcard_leP, pcard_leTP, pcard_injP, ppcard_leP
    • lemmas pcard_eq, pcard_eqP, card_bijP, card_eqVP, card_set_bijP
    • lemmas ppcard_eqP, card_eqxx, inj_card_eq, card_some, card_image, card_imsub
    • hint card_eq00
    • lemmas empty_eq0, card_le_emptyl, card_le_emptyr
    • multi-rule emptyE_subdef
    • lemmas card_eq_le, card_eqPle, card_leT, card_image_le
    • lemmas card_le_eql, card_le_eqr, card_eql, card_eqr, card_ge_image, card_le_image, card_le_image2, card_eq_image, card_eq_imager, card_eq_image2
    • lemmas card_ge_some, card_le_some, card_le_some2, card_eq_somel, card_eq_somer, card_eq_some2
    • lemmas card_eq_emptyr, card_eq_emptyl, emptyE
    • lemma and hint card_setT
    • lemma and hint card_setT_sym
    • lemmas surj_card_ge, pcard_surjP, pcard_geP, ocard_geP, pfcard_geP
    • lemmas ocard_eqP, oocard_eqP, sub_setP, card_subP
    • lemmas eq_countable, countable_set_countMixin, countableP, sub_countable
    • lemmas card_II, finite_fsetP, finite_subfsetP, finite_seqP, finite_fset, finite_finpred, finite_finset, infiniteP, finite_setPn
    • lemmas card_le_finite, finite_set_leP, card_ge_preimage, eq_finite_set, finite_image
    • lemma and hint finite_set1
    • lemmas finite_setU, finite_set2, finite_set3, finite_set4, finite_set5, finite_set6, finite_set7, finite_setI, finite_setIl, finite_setIr, finite_setM, finite_image2, finite_image11
    • definition fset_set
    • lemmas fset_setK, in_fset_set, fset_set0, fset_set1, fset_setU, fset_setI, fset_setU1, fset_setD, fset_setD1, fset_setM
    • definitions fst_fset, snd_fset, notations .`1, .`2
    • lemmas finite_set_fst, finite_set_snd, bigcup_finite, finite_setMR, finite_setML, fset_set_II, set_fsetK, fset_set_inj, bigsetU_fset_set, bigcup_fset_set, bigsetU_fset_set_cond, bigcup_fset_set_cond, bigsetI_fset_set, bigcap_fset_set, super_bij, card_eq_fsetP, card_IID, finite_set_bij
    • lemmas countable1, countable_fset
    • lemma and hint countable_finpred
    • lemmas eq_card_nat
    • canonical rat_pointedType
    • lemmas infinite_rat, card_rat, choicePcountable, eqPcountable, Pcountable, bigcup_countable, countableMR, countableM, countableML, infiniteMRl, cardMR_eq_nat
    • mixin FiniteImage, structure FImFun, notations {fumfun ... >-> ...}, [fimfun of ...], hint fimfunP
    • lemma and hint fimfun_inP
    • definitions fimfun, fimfun_key, canonical fimfun_keyed
    • definitions fimfun_Sub_subproof, fimfun_Sub
    • lemmas fimfun_rect, fimfun_valP, fimfuneqP
    • definitions and canonicals fimfuneqMixin, fimfunchoiceMixin
    • lemma finite_image_cst, cst_fimfun_subproof, fimfun_cst
    • definition cst_fimfun
    • lemma comp_fimfun_subproof
    • lemmas fimfun_zmod_closed, fimfunD, fimfunN, fimfunB, fimfun0, fimfun_sum
    • canonicals fimfun_add, fimfun_zmod, fimfun_zmodType
    • definition fimfun_zmodMixin
  • in measure.v:
    • definitions setC_closed, setI_closed, setU_closed, setD_closed, setDI_closed, fin_bigcap_closed, finN0_bigcap_closed, fin_bigcup_closed, semi_setD_closed, ndseq_closed, trivIset_closed, fin_trivIset_closed, set_ring, sigma_algebra, dynkin, monotone_classes
    • notations <<m D, G >>, <<m G >>, <<s D, G>>, <<s G>>, <<d G>>, <<r G>>, <<fu G>>
    • lemmas fin_bigcup_closedP, finN0_bigcap_closedP, sedDI_closedP, sigma_algebra_bigcap, sigma_algebraP
    • lemma and hint smallest_sigma_algebra
    • lemmas sub_sigma_algebra2, sigma_algebra_id, sub_sigma_algebra, sigma_algebra0, sigma_algebraD, sigma_algebra_bigcup
    • lemma and hint smallest_setring, lemma and hint setring0
    • lemmas sub_setring2, setring_id, sub_setring, setringDI, setringU, setring_fin_bigcup, monotone_class_g_salgebra
    • lemmas smallest_monotone_classE, monotone_class_subset, dynkinT, dynkinC, dynkinU, dynkin_monotone, dynkin_g_dynkin, sigma_algebra_dynkin, dynkin_setI_bigsetI, dynkin_setI_sigma_algebra, setI_closed_gdynkin_salgebra
    • factories isRingOfSets, isAlgebraOfSets
    • lemmas fin_bigcup_measurable, fin_bigcap_measurable, sigma_algebra_measurable, sigma_algebraC
    • definition measure_restr, lemma measure_restrE
    • definition g_measurableType
    • lemmas measurable_g_measurableTypeE
    • lemmas measurable_fun_id, measurable_fun_comp, eq_measurable_fun, measurable_fun_cst, measurable_funU, measurable_funS, measurable_fun_ext, measurable_restrict
    • definitions preimage_class and image_class
    • lemmas preimage_class_measurable_fun, sigma_algebra_preimage_class, sigma_algebra_image_class, sigma_algebra_preimage_classE, measurability
    • definition sub_additive
    • lemma semi_additiveW
    • lemmas content_fin_bigcup, measure_fin_bigcup, measure_bigsetU_ord_cond, measure_bigsetU_ord,
    • coercion measure_to_nadditive_measure
    • lemmas measure_semi_bigcup, measure_bigcup
    • hint measure_ge0
    • lemma big_trivIset
    • defintion covered_by
    • module SetRing
      • lemmas ring_measurableE, ring_fsets
      • definition decomp
      • lemmas decomp_triv, decomp_triv, decomp_neq0, decomp_neq0, decomp_measurable, cover_decomp, decomp_sub, decomp_set0, decomp_set0
      • definition measure
      • lemma Rmu_fin_bigcup, RmuE, Rmu0, Rmu_ge0, Rmu_additive, Rmu_additive_measure
      • canonical measure_additive_measure
    • lemmas covered_byP, covered_by_finite, covered_by_countable, measure_le0, content_sub_additive, content_sub_fsum, content_ring_sup_sigma_additive, content_ring_sigma_additive, ring_sigma_sub_additive, ring_sigma_additive, measure_sigma_sub_additive, measureIl, measureIr, subset_measure0, measureUfinr, measureUfinl, eq_measureU, null_set_setU
    • lemmas g_salgebra_measure_unique_trace, g_salgebra_measure_unique_cover, g_salgebra_measure_unique, measure_unique, measurable_mu_extE, Rmu_ext, measurable_Rmu_extE, sub_caratheodory
    • definition Hahn_ext, canonical Hahn_ext_measure, lemma Hahn_ext_sigma_finite, Hahn_ext_unique, caratheodory_measurable_mu_ext
    • definitions preimage_classes, prod_measurable, prod_measurableType
    • lemmas preimage_classes_comp, measurableM, measurable_prod_measurableType, measurable_prod_g_measurableTypeR, measurable_prod_g_measurableType, prod_measurable_funP, measurable_fun_prod1, measurable_fun_prod2
  • in functions.v:
    • definitions set_fun, set_inj
    • mixin isFun, structure Fun, notations {fun ... >-> ...}, [fun of ...]
      • field funS declared as a hint
    • mixin OInv, structure OInversible, notations {oinv ... >-> ...}, [oinv of ...], 'oinv_ ...
    • structure OInvFun, notations {oinvfun ... >-> ...}, [oinvfun of ...]
    • mixin OInv_Inv, factory Inv, structure Inversible, notations {inv ... >-> ...}, [inv of ...], notation ^-1
    • structure InvFun, notations {invfun ... >-> ...}, [invfun of ...]
    • mixin OInv_CanV with field oinvK declared as a hint, factory OCanV
    • structure Surject, notations {surj ... >-> ...}, [surj of ...]
    • structure SurjFun, notations {surjfun ... >-> ...}, [surjfun of ...]
    • structure SplitSurj, notations {splitsurj ... >-> ...}, [splitsurj of ...]
    • structure SplitSurjFun, notations {splitsurjfun ... >-> ...}, [splitsurjfun of ...]
    • mixin OInv_Can with field funoK declared as a hint, structure Inject, notations {inj ... >-> ...}, [inj of ...]
    • structure InjFun, notations {injfun ... >-> ...}, [injfun of ...]
    • structure SplitInj, notations {splitinj ... >-> ...}, [splitinj of ...]
    • structure SplitInjFun, notations {splitinjfun ... >-> ...}, [splitinjfun of ...]
    • structure Bij, notations {bij ... >-> ...}, [bij of ...]
    • structure SplitBij, notations {splitbij ... >-> ...}, [splitbij of ...]
    • module ShortFunSyntax for shorter notations
    • notation 'funS_ ...
    • definition and hint fun_image_sub
    • definition and hint mem_fun
    • notation 'mem_fun_ ...
    • lemma some_inv
    • notation 'oinvS_ ...
    • variant oinv_spec, lemma and hint oinvP
    • notation 'oinvP_ ...
    • lemma and hint oinvT, notation 'oinvT_ ...
    • lemma and hint invK, notation 'invK_ ...
    • lemma and hint invS, notation 'invS_ ...
    • notation 'funoK_ ...
    • definition inj and notation 'inj_ ...
    • definition and hint inj_hint
    • lemma and hint funK, notation 'funK_ ...
    • lemma funP
    • factories Inv_Can, Inv_CanV
    • lemmas oinvV, surjoinv_inj_subproof, injoinv_surj_subproof, invV, oinv_some, some_canV_subproof, some_fun_subproof, inv_oapp, oinv_oapp, inv_oappV, oapp_can_subproof, oapp_surj_subproof, oapp_fun_subproof, inv_obind, oinv_obind, inv_obindV, oinv_comp, some_comp_inv, inv_comp, comp_can_subproof, comp_surj_subproof,
    • notation 'totalfun_ ...
    • lemmas oinv_olift, inv_omap, oinv_omap, omapV
    • factories canV, OInv_Can2, OCan2, Can, Inv_Can2, Can2, SplitInjFun_CanV, BijTT
    • lemmas surjective_oinvK, surjective_oinvS, coercion surjective_ocanV
    • definition and coercion surjection_of_surj, lemma Psurj, coercion surjection_of_surj
    • lemma oinv_surj, lemma and hint surj, notation 'surj_
    • definition funin, lemma set_fun_image, notation [fun ... in ...]
    • definition split_, lemmas splitV, splitis_inj_subproof, splitid, splitsurj_subproof, notation 'split_, split
    • factories Inj, SurjFun_Inj, SplitSurjFun_Inj
    • lemmas Pinj, Pfun, injPfun, funPinj, funPsurj, surjPfun, Psplitinj, funPsplitinj, PsplitinjT, funPsplitsurj, PsplitsurjT
    • definition unbind
    • lemmas unbind_fun_subproof, oinv_unbind, inv_unbind_subproof, inv_unbind, unbind_inj_subproof, unbind_surj_subproof, odflt_unbind, oinv_val, val_bij_subproof, inv_insubd
    • definition to_setT, lemma inv_to_setT
    • definition subfun, lemma subfun_inj
    • lemma subsetW, definition subsetCW
    • lemmas subfun_imageT, subfun_inv_subproof
    • definition seteqfun, lemma seteqfun_can2_subproof
    • definitions incl, eqincl, lemma eqincl_surj, notation inclT
    • definitions mkfun, mkfun_fun
    • definition set_val, lemmas oinv_set_val, set_valE
    • definition ssquash
    • lemma set0fun_inj
    • definitions finset_val, val_finset
    • lemmas finset_valK, val_finsetK
    • definition glue, glue1, glue2, lemmas glue_fun_subproof, oinv_glue, some_inv_glue_subproof, inv_glue, glueo_can_subproof, glue_canv_subproof
    • lemmas inv_addr, addr_can2_subproof
    • lemmas empty_can_subproof, empty_fun_subproof, empty_canv_subproof
    • lemmas subl_surj, subr_surj, surj_epi, epiP, image_eq, oinv_image_sub, oinv_Iimage_sub, oinv_sub_image, inv_image_sub, inv_Iimage_sub, inv_sub_image, reindex_bigcup, reindex_bigcap, bigcap_bigcup, trivIset_inj, set_bij_homo
    • definition and hint fun_set_bij
    • coercion set_bij_bijfun
    • definition and coercion bij_of_set_bijection
    • lemma and hint bij, notation 'bij_
    • definition bijection_of_bijective, lemmas PbijTT, setTT_bijective, lemma and hint bijTT, notation 'bijTT_
    • lemmas patchT, patchN, patchC, patch_inj_subproof, preimage_restrict, comp_patch, patch_setI, patch_set0, patch_setT, restrict_comp
    • definitions sigL, sigLfun, valL_, valLfun_
    • lemmas sigL_isfun, valL_isfun, sigLE, eq_sigLP, eq_sigLfunP, sigLK, valLK, valLfunK, sigL_valL, sigL_valLfun\, sigL_restrict, image_sigL, eq_restrictP
    • notations 'valL_ ..., 'valLfun_ ..., valL
    • definitions sigR, valLr, valLr_fun
    • lemmas sigRK, sigR_funK, valLrP, valLrK
    • lemmas oinv_sigL, sigL_inj_subproof, sigL_surj_subproof, oinv_sigR, sigR_inj_subproof, sigR_surj_subproof, sigR_some_inv, inv_sigR, sigL_some_inv, inv_sigL, oinv_valL, oapp_comp_x, valL_inj_subproof, valL_surj_subproof, valL_some_inv, inv_valL, sigL_injP, sigL_surjP, sigL_funP, sigL_bijP, valL_injP, valL_surjP, valLfunP, valL_bijP
    • lemmas oinv_valLr, valLr_inj_subproof, valLr_surj_subproof
    • definitions sigLR, valLR, valLRfun, lemmas valLRE, valLRfunE, sigL2K, valLRK, valLRfun_inj, sigLR_injP, valLR_injP, sigLR_surjP, valLR_surjP, sigLR_bijP, sigLRfun_bijP, valLR_bijP, subsetP
    • new lemmas eq_set_bijLR, eq_set_bij, bij_omap, bij_olift, bij_sub_sym, splitbij_sub_sym, set_bij00, bij_subl, bij_sub, splitbij_sub, can2_bij, bij_sub_setUrl, bij_sub_setUrr, bij_sub_setUrr, bij_sub_setUlr
    • definition pinv_, lemmas injpinv_surj, injpinv_image, injpinv_bij, surjpK, surjpinv_image_sub, surjpinv_inj, surjpinv_bij, bijpinv_bij, pPbij_, pPinj_, injpPfun_, funpPinj_
  • in fsbigop.v:
    • notations \big[op/idx]_(i \in A) f i, \sum_(i \in A) f i
    • lemma finite_index_key
    • definition finite_support
    • lemmas in_finite_support, no_finite_support, eq_finite_support
    • variant finite_support_spec
    • lemmas finite_supportP, eq_fsbigl, eq_fsbigr, fsbigTE, fsbig_mkcond, fsbig_mkcondr, fsbig_mkcondl, bigfs, fsbigE, fsbig_seq, fsbig1, fsbig_dflt, fsbig_widen, fsbig_supp, fsbig_fwiden, fsbig_set0, fsbig_set1, full_fsbigID, fsbigID, fsbigU, fsbigU0, fsbigD1, full_fsbig_distrr, fsbig_distrr, mulr_fsumr, mulr_fsuml, fsbig_ord, fsbig_finite, reindex_fsbig, fsbig_image, reindex_inside, reindex_fsbigT, notation reindex_inside_setT
    • lemmas ge0_mule_fsumr, ge0_mule_fsuml, fsbigN1, fsume_ge0, fsume_le0, fsume_gt0, fsume_lt0, pfsume_eq0, fsbig_setU, pair_fsum, exchange_fsum, fsbig_split
  • in set_interval.v:
    • definition neitv
    • lemmas neitv_lt_bnd, set_itvP, subset_itvP, set_itvoo, set_itvco, set_itvcc, set_itvoc, set_itv1, set_itvoo0, set_itvoc0, set_itvco0, set_itv_infty_infty, set_itv_o_infty, set_itv_c_infty, set_itv_infty_o, set_itv_infty_c, set_itv_pinfty_bnd, set_itv_bnd_ninfty
    • multirules set_itv_infty_set0, set_itvE
    • lemmas setUitv1, setU1itv
    • lemmas neitvE, neitvP, setitv0
    • lemmas set_itvI
    • lemmas and hints has_lbound_itv, has_ubound_itv, hasNlbound_itv, hasNubound_itv, has_sup_half, has_inf_half
    • lemmas opp_itv_bnd_infty, opp_itvoo, sup_itv, inf_itv, sup_itvcc, inf_itvcc setCitvl, setCitvr, setCitv
    • lemmas set_itv_splitD, set_itvK, RhullT, RhullK, itv_c_inftyEbigcap, itv_bnd_inftyEbigcup, itv_o_inftyEbigcup, set_itv_setT, set_itv_ge
    • definitions conv, factor
    • lemmas conv_id, convEl, convEr, conv10, conv0, conv1, conv_sym, conv_flat, factorl, factorr, factor_flat, mem_1B_itvcc, factorK, convK, conv_inj, conv_bij, factor_bij, leW_conv, leW_factor, le_conv, le_factor, lt_conv, lt_factor
    • definition ndconv
    • lemmas ndconvE, conv_itv_bij, conv_itv_bij, factor_itv_bij, mem_conv_itv, mem_factor_itv, mem_conv_itvcc, range_conv, range_factor, Rhull_smallest, le_Rhull, neitv_Rhull, Rhull_involutive
    • coercion ereal_of_itv_bound
    • lemmas le_bnd_ereal, lt_ereal_bnd, neitv_bnd1, neitv_bnd2, Interval_ereal_mem, ereal_mem_Interval, trivIset_set_itv_nth
    • definition disjoint_itv
    • lemmas disjoint_itvxx, lt_disjoint, disjoint_neitv, disj_itv_Rhull
  • new file numfun.v
    • lemmas restrict_set0, restrict_ge0, erestrict_set0, erestrict_ge0, ler_restrict, lee_restrict
    • definition funenng and notation ^\+, definition funennp and notation ^\-
    • lemmas and hints funenng_ge0, funennp_ge0
    • lemmas funenngN, funennpN, funenng_restrict, funennp_restrict, ge0_funenngE, ge0_funennpE, le0_funenngE, le0_funennpE, gt0_funenngM, gt0_funennpM, lt0_funenngM, lt0_funennpM, fune_abse, funenngnnp, add_def_funennpg, funeD_Dnng, funeD_nngD
    • definition indic and notation \1_
    • lemmas indicE, indicT, indic0, indic_restrict, restrict_indic, preimage_indic, image_indic, image_indic_sub
  • in trigo.v:
    • lemmas acos1, acos0, acosN1, acosN, cosKN, atan0, atan1
  • new file lebesgue_measure.v
  • new file lebesgue_integral.v

Changed

  • in boolp.v:
    • equality_mixin_of_Type, choice_of_Type -> see classicalType
  • in topology.v:
    • generalize connected_continuous_connected, continuous_compact
    • arguments of subspace
    • definition connected_component
  • in sequences.v:
    • \sum notations for extended real numbers now in ereal_scope
    • lemma ereal_cvg_sub0 is now an equivalence
  • in derive.v:
    • generalize EVT_max, EVT_min, Rolle, MVT, ler0_derive1_nincr, le0r_derive1_ndecr with subspace topology
    • implicits of cvg_at_rightE, cvg_at_leftE
  • in trigo.v:
    • the realType argument of pi is implicit
    • the printed type of acos, asin, atan is R -> R
  • in esum.v (was csum.v):
    • lemma esum_ge0 has now a weaker hypothesis
  • notation `I_ moved from cardinality.v to classical_sets.v
  • moved from classical_types.v to boolp.v:
    • definitions gen_eq and gen_eqMixin, lemma gen_eqP
    • canonicals arrow_eqType, arrow_choiceType
    • definitions dep_arrow_eqType, dep_arrow_choiceClass, dep_arrow_choiceType
    • canonicals Prop_eqType, Prop_choiceType
  • in classical_sets.v:
    • arguments of preimage
    • [set of f] becomes range f (the old notation is still available but is displayed as the new one, and will be removed in future versions)
  • in cardinality.v:
    • definition card_eq now uses {bij ... >-> ...}
    • definition card_le now uses {injfun ... >-> ...}
    • definition set_finite changed to finite_set
    • definition card_leP now uses reflect
    • definition card_le0P now uses reflect
    • definition card_eqP now uses reflect
    • statement of theorem Cantor_Bernstein
    • lemma subset_card_le does not require finiteness of rhs anymore
    • lemma surjective_card_le does not require finiteness of rhs anymore and renamed to surj_card_ge
    • lemma card_le_diff does not require finiteness of rhs anymore and renamed to card_le_setD
    • lemma card_eq_sym now an equality
    • lemma card_eq0 now an equality
    • lemmas card_le_II and card_eq_II now equalities
    • lemma countable_injective renamed to countable_injP and use reflect
    • lemmas II0, II1, IIn_eq0 moved to classical_sets.v
    • lemma II_recr renamed to IIS and moved to classical_sets.v
    • definition surjective moved to functions.v and renamed set_surj
    • definition set_bijective moved to functions.v and changed to set_bij
    • lemma surjective_id moved to functions.v and renamed surj_id
    • lemma surjective_set0 moved to functions.v and renamed surj_set0
    • lemma surjectiveE moved to functions.v and renamed surjE
    • lemma surj_image_eq moved to functions.v
    • lemma can_surjective moved to functions.v and changed to can_surj
    • lemma surjective_comp moved to functions.v and renamed surj_comp
    • lemma set_bijective1 moved to functions.v and renamed eq_set_bijRL
    • lemma set_bijective_image moved to functions.v and renamed inj_bij
    • lemma set_bijective_subset moved to functions.v and changed to bij_subr
    • lemma set_bijective_comp moved to functions.v and renamed set_bij_comp
    • definition inverse changed to pinv_, see functions.v
    • lemma inj_of_bij moved to functions.v and renamed to set_bij_inj
    • lemma sur_of_bij moved to functions.v and renamed to set_bij_surj
    • lemma sub_of_bij moved to functions.v and renamed to set_bij_sub
    • lemma set_bijective_D1 moved to functions.v and renamed to bij_II_D1
    • lemma injective_left_inverse moved to functions.v and changed to pinvKV
    • lemma injective_right_inverse moved to functions.v and changed to pinvK
    • lemmas image_nat_maximum, fset_nat_maximum moved to mathcomp_extra.v
    • lemmas enum0, enum_recr moved to mathcomp_extra.v and renamed to enum_ord0, enum_ordS
    • lemma in_inj_comp moved to mathcomp_extra.v
  • from cardinality.v to classical_sets.v:
    • eq_set0_nil -> set_seq_eq0
    • eq_set0_fset0 -> set_fset_eq0
  • in measure.v:
    • definition bigcup2, lemma bigcup2E moved to classical_sets.v
    • mixin isSemiRingOfSets and isRingOfSets changed
    • types semiRingOfSetsType, ringOfSetsType, algebraOfSetsType, measurableType now pointed types
    • definition measurable_fun changed
    • definition sigma_sub_additive changed and renamed to sigma_subadditive
    • record AdditiveMeasure.axioms
    • lemmas measure_ge0
    • record Measure.axioms
    • definitions seqDU, seqD, lemma and hint trivIset_seqDU, lemmas bigsetU_seqDU, seqDU_bigcup_eq, seqDUE, trivIset_seqD, bigsetU_seqD, setU_seqD, eq_bigsetU_seqD, eq_bigcup_seqD, eq_bigcup_seqD_bigsetU moved to sequences.v
    • definition negligibleP weakened to additive measures
    • lemma measure_negligible
    • definition caratheodory_measurable and caratheodory_type weakened from outer measures to functions
    • lemma caratheodory_measure_ge0 does take a condition anymore
    • definitions measurable_cover and mu_ext, canonical outer_measure_of_measure weakened to semiRingOfSetsType
  • in ereal.v:
    • lemmas abse_ge0, gee0_abs, gte0_abs, lee0_abs, lte0_abs, mulN1e, muleN1 are generalized from realDomainType to numDomainType
  • moved from normedtype.v to mathcomp_extra.v:
    • lemmas ler_addgt0Pr, ler_addgt0Pl, in_segment_addgt0Pr, in_segment_addgt0Pl,
  • moved from posnum.v to mathcomp_extra.v:
    • lemma splitr
  • moved from measure.v to sequences.v
    • lemma cvg_geometric_series_half
    • lemmas realDe, realDed, realMe, nadde_eq0, padde_eq0, adde_ss_eq0, ndadde_eq0, pdadde_eq0, dadde_ss_eq0, mulrpinfty_real, mulpinftyr_real, mulrninfty_real, mulninftyr_real, mulrinfty_real
  • moved from topology.v to functions.v
    • section function_space (defintion cst, definition fct_zmodMixin, canonical fct_zmodType, definition fct_ringMixin, canonical fct_ringType, canonical fct_comRingType, definition fct_lmodMixin, canonical fct_lmodType, lemma fct_lmodType)
    • lemmas addrfunE, opprfunE, mulrfunE, scalrfunE, cstE, exprfunE, compE
    • definition fctE
  • moved from classical_sets.v to functions.v
    • definition patch, notation restrict and f \_ D

Renamed

  • in topology.v:
    • closedC -> open_closedC
    • openC -> closed_openC
    • cvg_restrict_dep -> cvg_sigL
  • in classical_sets.v:
    • mkset_nil -> set_nil
  • in cardinality.v:
    • card_le0x -> card_ge0
    • card_eq_sym -> card_esym
    • set_finiteP -> finite_setP
    • set_finite0 -> finite_set0
    • set_finite_seq -> finite_seq
    • set_finite_countable -> finite_set_countable
    • subset_set_finite -> sub_finite_set
    • set_finite_preimage -> finite_preimage
    • set_finite_diff -> finite_setD
    • countably_infinite_prod_nat -> card_nat2
  • file csum.v renamed to esum.v with the following renamings:
    • \csum -> \esum
    • csum -> esum
    • csum0 -> esum_set0
    • csum_ge0 -> esum_ge0
    • csum_fset -> esum_fset
    • csum_image -> esum_image
    • csum_bigcup -> esum_bigcup
  • in ereal.v:
    • lte_subl_addl -> lte_subel_addl
    • lte_subr_addr -> lte_suber_addr
    • lte_dsubl_addl -> lte_dsubel_addl
    • lte_dsubr_addr -> lte_dsuber_addr

Removed

  • in ereal.v:
    • lemmas esum_fset_ninfty, esum_fset_pinfty
    • lemmas desum_fset_pinfty, desum_fset_ninfty
    • lemmas big_nat_widenl, big_geq_mkord
  • in csum.v:
    • lemmas fsets_img, fsets_ord, fsets_ord_nat, fsets_ord_subset, csum_bigcup_le, le_csum_bigcup
  • in classical_sets.v:
    • lemma subsetU
    • definition restrict_dep, extend_up, lemma restrict_depE
  • in cardinality.v:
    • lemma surjective_image, surjective_image_eq0
    • lemma surjective_right_inverse,
    • lemmas card_le_surj, card_eq00
    • lemmas card_eqTT, card_eq_II, card_eq_le, card_leP
    • lemmas set_bijective_inverse, countable_trans, set_bijective_U1, set_bijective_cyclic_shift, set_bijective_cyclic_shift_simple, set_finite_bijective, subset_set_finite_card_le, injective_set_finite_card_le, injective_set_finite, injective_card_le, surjective_set_finite_card_le, set_finite_inter_set0_union, ex_in_D.
    • definitions min_of_D, min_of_D_seq, infsub_enum
    • lemmas min_of_D_seqE, increasing_infsub_enum, sorted_infsub_enum, injective_infsub_enum, subset_infsub_enum, infinite_nat_subset_countable
    • definition enumeration
    • lemmas enumeration_id, enumeration_set0, ex_enum_notin
    • defnitions min_of_e, min_of_e_seq, smallest_of_e, enum_wo_rep
    • lemmas enum_wo_repE, min_of_e_seqE, smallest_of_e_notin_enum_wo_rep, injective_enum_wo_rep, surjective_enum_wo_rep, set_bijective_enum_wo_rep, enumeration_enum_wo_rep, countable_enumeration
    • definition nat_of_pair
    • lemmas nat_of_pair_inj, countable_prod_nat
  • in measure.v:
    • definition diff_fsets
    • lemmas semiRingOfSets_measurableI, semiRingOfSets_measurableD, semiRingOfSets_diff_fsetsE, semiRingOfSets_diff_fsets_disjoint
    • definition uncurry
  • in sequences.v:
    • lemmas leq_fact, prod_rev, fact_split (now in MathComp)
  • in boolp.v
    • module BoolQuant with notations `[forall x P] and `[exists x P] (subsumed by `[< >])
    • definition xchooseb
    • lemmas existsPP, forallPP, existsbP, forallbP, forallbE, existsp_asboolP, forallp_asboolP, xchoosebP, imsetbP
  • in normedtype.v:
    • lemmas nbhs_pinfty_gt_pos, nbhs_pinfty_ge_pos, nbhs_ninfty_lt_pos, nbhs_ninfty_le_pos

[0.3.13] - 2022-01-24

Added

  • in topology.v:
    • definitions kolmogorov_space, accessible_space
    • lemmas accessible_closed_set1, accessible_kolmogorov
    • lemma filter_pair_set
    • definition prod_topo_apply
    • lemmas prod_topo_applyE, prod_topo_apply_continuous, hausdorff_product
  • in ereal.v:
    • lemmas lee_pemull, lee_nemul, lee_pemulr, lee_nemulr
    • lemma fin_numM
    • definition mule_def, notation x *? y
    • lemma mule_defC
    • notations \* in ereal_scope, and ereal_dual_scope
    • lemmas mule_def_fin, mule_def_neq0_infty, mule_def_infty_neq0, neq0_mule_def
    • notation \- in ereal_scope and ereal_dual_scope
    • lemma fin_numB
    • lemmas mule_eq_pinfty, mule_eq_ninfty
    • lemmas fine_eq0, abse_eq0
  • in sequences.v:
    • lemmas ereal_cvgM_gt0_pinfty, ereal_cvgM_lt0_pinfty, ereal_cvgM_gt0_ninfty, ereal_cvgM_lt0_ninfty, ereal_cvgM

Changed

  • in topology.v:
    • renamed and generalized setC_subset_set1C implication to equivalence subsetC1
  • in ereal.v:
    • lemmas ereal_sup_gt, ereal_inf_lt now use exists2
  • notation \* moved from realseq.v to topology.v

Renamed

  • in `topology.v:
    • hausdorff -> hausdorff_space

Removed

  • in realseq.v:
    • notation \-

Infrastructure

  • add .dir-locals.el for company-coq symbols

[0.3.12] - 2021-12-29

Added

  • in boolp.v:
    • lemmas not_True, not_False
  • in classical_sets.v:
    • lemma setDIr
    • lemmas setMT, setTM, setMI
    • lemmas setSM, setM_bigcupr, setM_bigcupl
    • lemmas cover_restr, eqcover_r
    • lemma notin_set
  • in reals.v:
    • lemma has_ub_lbN
  • in ereal.v:
    • lemma onee_eq0
    • lemma EFinB
    • lemmas mule_eq0, mule_lt0_lt0, mule_gt0_lt0, mule_lt0_gt0, pmule_rge0, pmule_lge0, nmule_lge0, nmule_rge0, pmule_rgt0, pmule_lgt0, nmule_lgt0, nmule_rgt0
    • lemmas muleBr, muleBl
    • lemma eqe_absl
    • lemma lee_pmul
    • lemmas fin_numElt, fin_numPlt
  • in topology.v
    • lemmas cstE, compE, opprfunE, addrfunE, mulrfunE, scalrfunE, exprfunE
    • multi-rule fctE
    • lemmas within_interior, within_subset, withinE, fmap_within_eq
    • definitions subspace, incl_subspace.
    • canonical instances of pointedType, filterType, topologicalType, uniformType and pseudoMetricType on subspace.
    • lemmas nbhs_subspaceP, nbhs_subspace_in, nbhs_subspace_out, subspace_cvgP, subspace_continuousP, subspace_eq_continuous, nbhs_subspace_interior, nbhs_subspace_ex, incl_subspace_continuous, open_subspace1out, open_subspace_out, open_subspaceT, open_subspaceIT, open_subspaceTI, closed_subspaceT, open_subspaceP, open_subspaceW, subspace_hausdorff, and compact_subspaceIP.
  • in normedtype.v
    • lemmas continuous_shift, continuous_withinNshiftx
    • lemmas bounded_fun_has_ubound, bounded_funN, bounded_fun_has_lbound, bounded_funD
  • in derive.v
    • lemmas derive1_comp, derivable_cst, derivable_id, trigger_derive`
    • instances is_derive_id, is_derive_Nid
  • in sequences.v:
    • lemmas cvg_series_bounded, cvg_to_0_linear, lim_cvg_to_0_linear.
    • lemma cvg_sub0
    • lemma cvg_zero
    • lemmas ereal_cvg_abs0, ereal_cvg_sub0, ereal_squeeze
    • lemma ereal_is_cvgD
  • in measure.v:
    • hints for measurable0 and measurableT
  • file realfun.v:
    • lemma is_derive1_caratheodory, is_derive_0_is_cst
    • instance is_derive1_comp
    • lemmas is_deriveV, is_derive_inverse
  • new file nsatz_realType
  • new file exp.v
    • lemma normr_nneg (hint)
    • definitions pseries, pseries_diffs
    • facts is_cvg_pseries_inside_norm, is_cvg_pseries_inside
    • lemmas pseries_diffsN, pseries_diffs_inv_fact, pseries_diffs_sumE, pseries_diffs_equiv, is_cvg_pseries_diffs_equiv, pseries_snd_diffs
    • lemmas expR0, expR_ge1Dx, exp_coeffE, expRE
    • instance is_derive_expR
    • lemmas derivable_expR, continuous_expR, expRxDyMexpx, expRxMexpNx_1
    • lemmas pexpR_gt1, expR_gt0, expRN, expRD, expRMm
    • lemmas expR_gt1, expR_lt1, expRB, ltr_expR, ler_expR, expR_inj, expR_total_gt1, expR_total
    • definition ln
    • fact ln0
    • lemmas expK, lnK, ln1, lnM, ln_inj, lnV, ln_div, ltr_ln, ler_ln, lnX
    • lemmas le_ln1Dx, ln_sublinear, ln_ge0, ln_gt0
    • lemma continuous_ln
    • instance is_derive1_ln
    • definition exp_fun, notation `^
    • lemmas exp_fun_gt0, exp_funr1, exp_funr0, exp_fun1, ler_exp_fun, exp_funD, exp_fun_inv, exp_fun_mulrn
    • definition riemannR, lemmas riemannR_gt0, dvg_riemannR
  • new file trigo.v
    • lemmas sqrtvR, eqr_div, big_nat_mul, cvg_series_cvg_series_group, lt_sum_lim_series
    • definitions periodic, alternating
    • lemmas periodicn, alternatingn
    • definition sin_coeff
    • lemmas sin_coeffE, sin_coeff_even, is_cvg_series_sin_coeff
    • definition sin
    • lemmas sinE
    • definition sin_coeff'
    • lemmas sin_coeff'E, cvg_sin_coeff', diffs_sin, series_sin_coeff0, sin0
    • definition cos_coeff
    • lemmas cos_ceff_2_0, cos_coeff_2_2, cos_coeff_2_4, cos_coeffE, is_cvg_series_cos_coeff
    • definition cos
    • lemma cosE
    • definition cos_coeff'
    • lemmas cos_coeff'E, cvg_cos_coeff', diffs_cos, series_cos_coeff0, cos0
    • instance is_derive_sin
    • lemmas derivable_sin, continuous_sin, is_derive_cos, derivable_cos, continuous_cos
    • lemmas cos2Dsin2, cos_max, cos_geN1, cos_le1, sin_max, sin_geN1, sin_le1
    • fact sinD_cosD
    • lemmas sinD, cosD
    • lemmas sin2cos2, cos2sin2, sin_mulr2n, cos_mulr2n
    • fact sinN_cosN
    • lemmas sinN, cosN
    • lemmas sin_sg, cos_sg, cosB, sinB
    • lemmas norm_cos_eq1, norm_sin_eq1, cos1sin0, sin0cos1, cos_norm
    • definition pi
    • lemmas pihalfE, cos2_lt0, cos_exists
    • lemmas sin2_gt0, cos_pihalf_uniq, pihalf_02_cos_pihalf, pihalf_02, pi_gt0, pi_ge0
    • lemmas sin_gt0_pihalf, cos_gt0_pihalf, cos_pihalf, sin_pihalf, cos_ge0_pihalf, cospi, sinpi
    • lemmas cos2pi, sin2pi, sinDpi, cosDpi, sinD2pi, cosD2pi
    • lemmas cosDpihalf, cosBpihalf, sinDpihalf, sinBpihalf, sin_ge0_pi
    • lemmas ltr_cos, ltr_sin, cos_inj, sin_inj
    • definition tan
    • lemmas tan0, tanpi, tanN, tanD, tan_mulr2n, cos2_tan2
    • lemmas tan_pihalf, tan_piquarter, tanDpi, continuous_tan
    • lemmas is_derive_tan, derivable_tan, ltr_tan, tan_inj
    • definition acos
    • lemmas acos_def, acos_ge0, acos_lepi, acosK, acos_gt0, acos_ltpi
    • lemmas cosK, sin_acos, continuous_acos, is_derive1_acos
    • definition asin
    • lemmas asin_def, asin_geNpi2, asin_lepi2, asinK, asin_ltpi2, asin_gtNpi2
    • lemmas sinK, cos_asin, continuous_asin, is_derive1_asin
    • definition atan
    • lemmas atan_def, atan_gtNpi2, atan_ltpi2, atanK, tanK
    • lemmas continuous_atan, cos_atan
    • instance is_derive1_atan

Changed

  • in normedtype.v:
    • nbhs_minfty_lt renamed to nbhs_ninfty_lt_pos and changed to not use {posnum R}
    • nbhs_minfty_le renamed to nbhs_ninfty_le_pos and changed to not use {posnum R}
  • in sequences.v:
    • lemma is_cvg_ereal_nneg_natsum: remove superfluous P parameter
    • statements of lemmas nondecreasing_cvg, nondecreasing_is_cvg, nonincreasing_cvg, nonincreasing_is_cvg use has_{l,u}bound predicates instead of requiring an additional variable
    • statement of lemma S1_sup use ubound instead of requiring an additional variable

Renamed

  • in normedtype.v:
    • nbhs_minfty_lt_real -> nbhs_ninfty_lt
    • nbhs_minfty_le_real -> nbhs_ninfty_le
  • in sequences.v:
    • cvgNminfty -> cvgNninfty
    • cvgPminfty -> cvgPninfty
    • ler_cvg_minfty -> ler_cvg_ninfty
    • nondecreasing_seq_ereal_cvg -> ereal_nondecreasing_cvg
  • in normedtype.v:
    • nbhs_pinfty_gt -> nbhs_pinfty_gt_pos
    • nbhs_pinfty_ge -> nbhs_pinfty_ge_pos
    • nbhs_pinfty_gt_real -> nbhs_pinfty_gt
    • nbhs_pinfty_ge_real -> nbhs_pinfty_ge
  • in measure.v:
    • measure_bigcup -> measure_bigsetU
  • in ereal.v:
    • mulrEDr -> muleDr
    • mulrEDl -> muleDl
    • dmulrEDr -> dmuleDr
    • dmulrEDl -> dmuleDl
    • NEFin -> EFinN
    • addEFin -> EFinD
    • mulEFun -> EFinM
    • daddEFin -> dEFinD
    • dsubEFin -> dEFinB

Removed

  • in ereal.v:
    • lemma subEFin

Infrastructure

  • in Makefile.common
    • add doc and doc-clean targets

[0.3.11] - 2021-11-14

Added

  • in boolp.v:
    • lemmas orA, andA
  • in classical_sets.v
    • lemma setC_inj,
    • lemma setD1K,
    • lemma subTset,
    • lemma setUidPr, setUidl and setUidr,
    • lemma setIidPr, setIidl and setIidr,
    • lemma set_fset0, set_fset1, set_fsetI, set_fsetU,
    • lemma bigcap_inf, subset_bigcup_r, subset_bigcap_r, eq_bigcupl, eq_bigcapl, eq_bigcup, eq_bigcap, bigcupU, bigcapI, bigcup_const, bigcap_const, bigcapIr, bigcupUr, bigcap_set0, bigcap_set1, bigcap0, bigcapT, bigcupT, bigcapTP, setI_bigcupl, setU_bigcapl, bigcup_mkcond, bigcap_mkcond, setC_bigsetU, setC_bigsetI, bigcap_set_cond, bigcap_set, bigcap_split, bigcap_mkord, subset_bigsetI, subset_bigsetI_cond, bigcap_image
    • lemmas bigcup_setU1, bigcap_setU1, bigcup_setU, bigcap_setU, bigcup_fset, bigcap_fset, bigcup_fsetU1, bigcap_fsetU1, bigcup_fsetD1, bigcap_fsetD1,
    • definition mem_set : A u -> u \in A
    • lemmas in_setP and in_set2P
    • lemma forall_sig
    • definition patch, notation restrict and f \_ D, definitions restrict_dep and extend_dep, with lemmas restrict_depE, fun_eq_inP, extend_restrict_dep, extend_depK, restrict_extend_dep, restrict_dep_restrict, restrict_dep_setT
    • lemmas setUS, setSU, setUSS, setUCA, setUAC, setUACA, setUUl, setUUr
    • lemmas bigcup_image, bigcup_of_set1, set_fset0, set_fset1, set_fsetI, set_fsetU, set_fsetU1, set_fsetD, set_fsetD1,
    • notation [set` i]
    • notations set_itv, `[a, b], `]a, b], `[a, b[, `]a, b[, `]-oo, b], `]-oo, b[, `[a, +oo], `]a, +oo], `]-oo, +oo[
    • lemmas setDDl, setDDr
  • in topology.v:
    • lemma fmap_comp
    • definition finSubCover
    • notations {uniform` A -> V } and {uniform U -> V} and their canonical structures of uniform type.
    • definition uniform_fun to cast into
    • notations {uniform A, F --> f } and {uniform, F --> f}
    • lemma uniform_cvgE
    • lemma uniform_nbhs
    • notation {ptws U -> V} and its canonical structure of topological type,
    • definition ptws_fun
    • notation {ptws F --> f }
    • lemma ptws_cvgE
    • lemma ptws_uniform_cvg
    • lemma cvg_restrict_dep
    • lemma eq_in_close
    • lemma hausdorrf_close_eq_in
    • lemma uniform_subset_nbhs
    • lemma uniform_subset_cvg
    • lemma uniform_restrict_cvg
    • lemma cvg_uniformU
    • lemma cvg_uniform_set0
    • notation {family fam, U -> V} and its canonical structure of topological type
    • notation {family fam, F --> f}
    • lemma fam_cvgP
    • lemma fam_cvgE
    • definition compactly_in
    • lemma family_cvg_subset
    • lemma family_cvg_finite_covers
    • lemma compact_cvg_within_compact
    • lemma le_bigmax
    • definition monotonous
    • lemma and_prop_in
    • lemmas mem_inc_segment, mem_dec_segment
    • lemmas ltr_distlC, ler_distlC
    • lemmas subset_ball_prop_in_itv, subset_ball_prop_in_itvcc
    • lemma dense_rat
  • in normedtype.v:
    • lemma is_intervalPlt
    • lemma mule_continuous
    • lemmas ereal_is_cvgN, ereal_cvgZr, ereal_is_cvgZr, ereal_cvgZl, ereal_is_cvgZl, ereal_limZr, ereal_limZl, ereal_limN
    • lemma bound_itvE
    • lemmas nearN, near_in_itv
    • lemmas itvxx, itvxxP, subset_itv_oo_cc
    • lemma at_right_in_segment
    • notations f @`[a, b], g @`]a , b[
    • lemmas mono_mem_image_segment, mono_mem_image_itvoo, mono_surj_image_segment, inc_segment_image, dec_segment_image, inc_surj_image_segment, dec_surj_image_segment, inc_surj_image_segmentP, dec_surj_image_segmentP, mono_surj_image_segmentP
  • in reals.v:
    • lemmas floor1, floor_neq0
    • lemma int_lbound_has_minimum
    • lemma rat_in_itvoo
  • in ereal.v:
    • notation x +? y for adde_def x y
    • lemmas ge0_adde_def, onee_neq0, mule0, mul0e
    • lemmas mulrEDr, mulrEDl, ge0_muleDr, ge0_muleDl
    • lemmas ge0_sume_distrl, ge0_sume_distrr
    • lemmas mulEFin, mule_neq0, mule_ge0, muleA
    • lemma muleE
    • lemmas muleN, mulNe, muleNN, gee_pmull, lee_mul01Pr
    • lemmas lte_pdivr_mull, lte_pdivr_mulr, lte_pdivl_mull, lte_pdivl_mulr, lte_ndivl_mulr, lte_ndivl_mull, lte_ndivr_mull, lte_ndivr_mulr
    • lemmas lee_pdivr_mull, lee_pdivr_mulr, lee_pdivl_mull, lee_pdivl_mulr, lee_ndivl_mulr, lee_ndivl_mull, lee_ndivr_mull, lee_ndivr_mulr
    • lemmas mulrpinfty, mulrninfty, mulpinftyr, mulninftyr, mule_gt0
    • definition mulrinfty
    • lemmas mulN1e, muleN1
    • lemmas mule_ninfty_pinfty, mule_pinfty_ninfty, mule_pinfty_pinfty
    • lemmas mule_le0_ge0, mule_ge0_le0, pmule_rle0, pmule_lle0, nmule_lle0, nmule_rle0
    • lemma sube0
    • lemmas adde_le0, sume_le0, oppe_ge0, oppe_le0, lte_opp, gee_addl, gee_addr, lte_addr, gte_subl, gte_subr, lte_le_sub, lee_sum_npos_subset, lee_sum_npos, lee_sum_npos_ord, lee_sum_npos_natr, lee_sum_npos_natl, lee_sum_npos_subfset, lee_opp, le0_muleDl, le0_muleDr, le0_sume_distrl, le0_sume_distrr, adde_defNN, minEFin, mine_ninftyl, mine_ninftyr, mine_pinftyl, mine_pinftyr, oppe_max, oppe_min, mineMr, mineMl
    • definitions dual_adde
    • notations for the above in scope ereal_dual_scope delimited by dE
    • lemmas dual_addeE, dual_sumeE, dual_addeE_def, daddEFin, dsumEFin, dsubEFin, dadde0, dadd0e, daddeC, daddeA, daddeAC, daddeCA, daddeACA, doppeD, dsube0, dsub0e, daddeK, dfin_numD, dfineD, dsubeK, dsube_eq, dsubee, dadde_eq_pinfty, daddooe, dadde_Neq_pinfty, dadde_Neq_ninfty, desum_fset_pinfty, desum_pinfty, desum_fset_ninfty, desum_ninfty, dadde_ge0, dadde_le0, dsume_ge0, dsume_le0, dsube_lt0, dsubre_le0, dsuber_le0, dsube_ge0, lte_dadd, lee_daddl, lee_daddr, gee_daddl, gee_daddr, lte_daddl, lte_daddr, gte_dsubl, gte_dsubr, lte_dadd2lE, lee_dadd2l, lee_dadd2lE, lee_dadd2r, lee_dadd, lte_le_dadd, lee_dsub, lte_le_dsub, lee_dsum, lee_dsum_nneg_subset, lee_dsum_npos_subset, lee_dsum_nneg, lee_dsum_npos, lee_dsum_nneg_ord, lee_dsum_npos_ord, lee_dsum_nneg_natr, lee_dsum_npos_natr, lee_dsum_nneg_natl, lee_dsum_npos_natl, lee_dsum_nneg_subfset, lee_dsum_npos_subfset, lte_dsubl_addr, lte_dsubl_addl, lte_dsubr_addr, lee_dsubr_addr, lee_dsubl_addr, ge0_dsume_distrl, dmulrEDr, dmulrEDl, dge0_mulreDr, dge0_mulreDl, dle0_mulreDr, dle0_mulreDl, ge0_dsume_distrr, le0_dsume_distrl, le0_dsume_distrr, lee_abs_dadd, lee_abs_dsum, lee_abs_dsub, dadde_minl, dadde_minr, lee_dadde, lte_spdaddr
    • lemmas abse0, abse_ge0, lee_abs, abse_id, lee_abs_add, lee_abs_sum, lee_abs_sub, gee0_abs, gte0_abs, lee_abs, lte0_abs, abseM, lte_absl, eqe_absl
    • notations maxe, mine
    • lemmas maxEFin, adde_maxl, adde_maxr, maxe_pinftyl, maxe_pinftyr, maxe_ninftyl, maxe_ninftyr
    • lemmas sub0e, lee_wpmul2r, mule_ninfty_ninfty
    • lemmas sube_eq lte_pmul2r, lte_pmul2l, lte_nmul2l, lte_nmul2r, mule_le0, pmule_llt0, pmule_rlt0, nmule_llt0, nmule_rlt0, mule_lt0
    • lemmas maxeMl, maxeMr
    • lemmas lte_0_pinfty, lte_ninfty_0, lee_0_pinfty, lee_ninfty_0, oppe_gt0, oppe_lt0
    • lemma telescope_sume
    • lemmas lte_add_pinfty, lte_sum_pinfty
  • in cardinality.v:
    • definition nat_of_pair, lemma nat_of_pair_inj
    • lemmas surjectiveE, surj_image_eq, can_surjective
  • in sequences.v:
    • lemmas lt_lim, nondecreasing_dvg_lt, ereal_lim_sum
    • lemmas ereal_nondecreasing_opp, ereal_nondecreasing_is_cvg, ereal_nonincreasing_cvg, ereal_nonincreasing_is_cvg
  • file realfun.v:
    • lemmas itv_continuous_inj_le, itv_continuous_inj_ge, itv_continuous_inj_mono
    • lemmas segment_continuous_inj_le, segment_continuous_inj_ge, segment_can_le, segment_can_ge, segment_can_mono
    • lemmas segment_continuous_surjective, segment_continuous_le_surjective, segment_continuous_ge_surjective
    • lemmas continuous_inj_image_segment, continuous_inj_image_segmentP, segment_continuous_can_sym, segment_continuous_le_can_sym, segment_continuous_ge_can_sym, segment_inc_surj_continuous, segment_dec_surj_continuous, segment_mono_surj_continuous
    • lemmas segment_can_le_continuous, segment_can_ge_continuous, segment_can_continuous
    • lemmas near_can_continuousAcan_sym, near_can_continuous, near_continuous_can_sym
    • lemmas exp_continuous, sqr_continuous, sqrt_continuous.
  • in measure.v:
    • definition seqDU
    • lemmas trivIset_seqDU, bigsetU_seqDU, seqDU_bigcup_eq, seqDUE
    • lemmas bigcup_measurable, bigcap_measurable, bigsetI_measurable

Changed

  • in classical_sets.v
    • setU_bigcup -> bigcupUl and reversed
    • setI_bigcap -> bigcapIl and reversed
    • removed spurious disjunction in bigcup0P
    • bigcup_ord -> bigcup_mkord and reversed
    • bigcup_of_set1 -> bigcup_imset1
    • bigcupD1 -> bigcup_setD1 and bigcapD1 -> bigcap_setD1 and rephrased using P `\ x instead of P `&` ~` [set x]
    • order of arguments for setIS, setSI, setUS, setSU, setSD, setDS
    • generalize lemma perm_eq_trivIset
  • in topology.v:
    • replace closed_cvg_loc and closed_cvg by a more general lemma closed_cvg
  • in normedtype.v:
    • remove useless parameter from lemma near_infty_natSinv_lt
    • definition is_interval
    • the following lemmas have been generalized to orderType, renamed as follows, moved out of the module BigmaxBigminr to topology.v:
      • bigmaxr_mkcond -> bigmax_mkcond
      • bigmaxr_split -> bigmax_split
      • bigmaxr_idl -> bigmax_idl
      • bigmaxrID -> bigmaxID
      • bigmaxr_seq1 -> bigmax_seq1
      • bigmaxr_pred1_eq -> bigmax_pred1_eq
      • bigmaxr_pred1 -> bigmax_pred1
      • bigmaxrD1 -> bigmaxD1
      • ler_bigmaxr_cond -> ler_bigmax_cond
      • ler_bigmaxr -> ler_bigmax
      • bigmaxr_lerP -> bigmax_lerP
      • bigmaxr_sup -> bigmax_sup
      • bigmaxr_ltrP -> bigmax_ltrP
      • bigmaxr_gerP -> bigmax_gerP
      • bigmaxr_eq_arg -> bigmax_eq_arg
      • bigmaxr_gtrP -> bigmax_gtrP
      • eq_bigmaxr -> eq_bigmax
      • module BigmaxBigminr -> Bigminr
  • in ereal.v:
    • change definition mule such that 0 x oo = 0
    • adde now defined using nosimpl and adde_subdef
    • mule now defined using nosimpl and mule_subdef
    • lemmas lte_addl, lte_subl_addr, lte_subl_addl, lte_subr_addr, lte_subr_addr, lte_subr_addr, lb_ereal_inf_adherent
    • oppeD to use fin_num
    • weaken realDomainType to numDomainType in mule_ninfty_pinfty, mule_pinfty_ninfty, mule_pinfty_pinfty, mule_ninfty_ninfty, mule_neq0, mule_ge0, mule_le0, mule_gt0, mule_le0_ge0, mule_ge0_le0
  • in reals.v:
    • generalize from realType to realDomainType lemmas has_ub_image_norm, has_inf_supN
  • in sequences.v:
    • generalize from realType to realFieldType lemmas cvg_has_ub, cvg_has_sup, cvg_has_inf
    • change the statements of cvgPpinfty, cvgPminfty, cvgPpinfty_lt
    • generalize nondecreasing_seqP, nonincreasing_seqP, increasing_seqP, decreasing_seqP to equivalences
    • generalize lee_lim, ereal_cvgD_pinfty_fin, ereal_cvgD_ninfty_fin, ereal_cvgD, ereal_limD, ereal_pseries0, eq_ereal_pseries from realType to realFieldType
    • lemma ereal_pseries_pred0 moved from csum.v, minor generalization
  • in landau.v:
    • lemma cvg_shift renamed to cvg_comp_shift and moved to normedtype.v
  • in measure.v:
    • lemmas measureDI, measureD, sigma_finiteP
  • exist_congr -> eq_exist and moved from classsical_sets.v to boolp.v
  • predeqP moved from classsical_sets.v to boolp.v
  • moved from landau.v to normedtype.v:
    • lemmas comp_shiftK, comp_centerK, shift0, center0, near_shift, cvg_shift
  • lemma exists2P moved from topology.v to boolp.v
  • move from sequences.v to normedtype.v and generalize from nat to T : topologicalType
    • lemmas ereal_cvgN

Renamed

  • in classical_sets.v
    • eqbigcup_r -> eq_bigcupr
    • eqbigcap_r -> eq_bigcapr
    • bigcup_distrr -> setI_bigcupr
    • bigcup_distrl -> setI_bigcupl
    • bigcup_refl -> bigcup_splitn
    • setMT -> setMTT
  • in ereal.v:
    • adde -> adde_subdef
    • mule -> mule_subdef
    • real_of_extended -> fine
    • real_of_extendedN -> fineN
    • real_of_extendedD -> fineD
    • EFin_real_of_extended -> fineK
    • real_of_extended_expand -> fine_expand
  • in sequences.v:
    • nondecreasing_seq_ereal_cvg -> nondecreasing_ereal_cvg
  • in topology.v:
    • nbhs' -> dnbhs
    • nbhsE' -> dnbhs
    • nbhs'_filter -> dnbhs_filter
    • nbhs'_filter_on -> dnbhs_filter_on
    • nbhs_nbhs' -> nbhs_dnbhs
    • Proper_nbhs'_regular_numFieldType -> Proper_dnbhs_regular_numFieldType
    • Proper_nbhs'_numFieldType -> Proper_dnbhs_numFieldType
    • ereal_nbhs' -> ereal_dnbhs
    • ereal_nbhs'_filter -> ereal_dnbhs_filter
    • ereal_nbhs'_le -> ereal_dnbhs_le
    • ereal_nbhs'_le_finite -> ereal_dnbhs_le_finite
    • Proper_nbhs'_numFieldType -> Proper_dnbhs_numFieldType
    • Proper_nbhs'_realType -> Proper_dnbhs_realType
    • nbhs'0_lt -> dnbhs0_lt
    • nbhs'0_le -> dnbhs0_le
    • continuity_pt_nbhs' -> continuity_pt_dnbhs
  • in measure.v:
    • measure_additive2 -> measureU
    • measure_additive -> measure_bigcup

Removed

  • in boolp.v:
    • definition PredType
    • local notation predOfType
  • in nngnum.v:
    • module BigmaxrNonneg containing the following lemmas:
      • bigmaxr_mkcond, bigmaxr_split, bigmaxr_idl, bigmaxrID, bigmaxr_seq1, bigmaxr_pred1_eq, bigmaxr_pred1, bigmaxrD1, ler_bigmaxr_cond, ler_bigmaxr, bigmaxr_lerP, bigmaxr_sup, bigmaxr_ltrP, bigmaxr_gerP, bigmaxr_gtrP
  • in sequences.v:
    • lemma closed_seq
  • in normedtype.v:
    • lemma is_intervalPle
  • in topology.v:
    • lemma continuous_cst
    • definition cvg_to_locally
  • in csum.v:
    • lemma ub_ereal_sup_adherent_img

[0.3.10] - 2021-08-11

Added

  • in classical_sets.v:
    • lemmas bigcup_image, bigcup_of_set1
    • lemmas bigcupD1, bigcapD1
  • in boolp.v:
    • definitions equality_mixin_of_Type, choice_of_Type
  • in normedtype.v:
    • lemma cvg_bounded_real
    • lemma pseudoMetricNormedZModType_hausdorff
  • in sequences.v:
    • lemmas seriesN, seriesD, seriesZ, is_cvg_seriesN, lim_seriesN, is_cvg_seriesZ, lim_seriesZ, is_cvg_seriesD, lim_seriesD, is_cvg_seriesB, lim_seriesB, lim_series_le, lim_series_norm
  • in measure.v:
    • HB.mixin AlgebraOfSets_from_RingOfSets
    • HB.structure AlgebraOfSets and notation algebraOfSetsType
    • HB.instance T_isAlgebraOfSets in HB.builders isAlgebraOfSets
    • lemma bigcup_set_cond
    • definition measurable_fun
    • lemma adde_undef_nneg_series
    • lemma adde_def_nneg_series
    • lemmas cvg_geometric_series_half, epsilon_trick
    • definition measurable_cover
    • lemmas cover_measurable, cover_subset
    • definition mu_ext
    • lemmas le_mu_ext, mu_ext_ge0, mu_ext0, measurable_uncurry, mu_ext_sigma_subadditive
    • canonical outer_measure_of_measure

Changed

  • in ereal.v, definition adde_undef changed to adde_def
    • consequently, the following lemmas changed:
      • in ereal.v, adde_undefC renamed to adde_defC, fin_num_adde_undef renamed to fin_num_adde_def
      • in sequences.v, ereal_cvgD and ereal_limD now use hypotheses with adde_def
  • in sequences.v:
    • generalize {in,de}creasing_seqP, non{in,de}creasing_seqP from numDomainType to porderType
  • in normedtype.v:
    • generalized from normedModType to pseudoMetricNormedZmodType:
      • nbhs_le_nbhs_norm
      • nbhs_norm_le_nbhs
      • nbhs_nbhs_norm
      • nbhs_normP
      • filter_from_norm_nbhs
      • nbhs_normE
      • filter_from_normE
      • near_nbhs_norm
      • nbhs_norm_ball_norm
      • nbhs_ball_norm
      • ball_norm_dec
      • ball_norm_sym
      • ball_norm_le
      • cvg_distP
      • cvg_dist
      • nbhs_norm_ball
      • dominated_by
      • strictly_dominated_by
      • sub_dominatedl
      • sub_dominatedr
      • dominated_by1
      • strictly_dominated_by1
      • ex_dom_bound
      • ex_strict_dom_bound
      • bounded_near
      • boundedE
      • sub_boundedr
      • sub_boundedl
      • ex_bound
      • ex_strict_bound
      • ex_strict_bound_gt0
      • norm_hausdorff
      • norm_closeE
      • norm_close_eq
      • norm_cvg_unique
      • norm_cvg_eq
      • norm_lim_id
      • norm_cvg_lim
      • norm_lim_near_cst
      • norm_lim_cst
      • norm_cvgi_unique
      • norm_cvgi_map_lim
      • distm_lt_split
      • distm_lt_splitr
      • distm_lt_splitl
      • normm_leW
      • normm_lt_split
      • cvg_distW
      • continuous_cvg_dist
      • add_continuous
  • in measure.v:
    • generalize lemma eq_bigcupB_of
    • HB.mixin Measurable_from_ringOfSets changed to Measurable_from_algebraOfSets
    • HB.instance T_isRingOfSets becomes T_isAlgebraOfSets in HB.builders isMeasurable
    • lemma measurableC now applies to algebraOfSetsType instead of measureableType
  • moved from normedtype.v to reals.v:
    • lemmas inf_lb_strict, sup_ub_strict
  • moved from sequences.v to reals.v:
    • lemma has_ub_image_norm

Renamed

  • in classical_sets.v:
    • bigcup_mkset -> bigcup_set
    • bigsetU -> bigcup
    • bigsetI -> bigcap
    • trivIset_bigUI -> trivIset_bigsetUI
  • in measure.v:
    • isRingOfSets -> isAlgebraOfSets
    • B_of -> seqD
    • trivIset_B_of -> trivIset_seqD
    • UB_of -> setU_seqD
    • bigUB_of -> bigsetU_seqD
    • eq_bigsetUB_of -> eq_bigsetU_seqD
    • eq_bigcupB_of -> eq_bigcup_seqD
    • eq_bigcupB_of_bigsetU -> eq_bigcup_seqD_bigsetU

Removed

  • in nngnum.v:
    • lemma filter_andb

[0.3.9] - 2021-06-12

Added

  • in sequences.v:
    • lemma dvg_harmonic
  • in classical_sets.v:
    • definitions image, image2

Changed

  • in classical_sets.v
    • notations [set E | x in A] and [set E | x in A & y in B] now use definitions image and image2 resp.
    • notation f @` A now uses the definition image
    • the order of arguments of image has changed compared to version 0.3.7: it is now image A f (it used to be image f A)

Removed

  • in sequences.v:
    • lemma iter_addr

[0.3.8] - 2021-06-01

Added

  • file reals.v:
    • lemmas le_floor, le_ceil
  • in ereal.v:
    • lemmas big_nat_widenl, big_geq_mkord
    • lemmas lee_sum_nneg_natr, lee_sum_nneg_natl
    • lemmas ereal_sup_gt, ereal_inf_lt
    • notation 0/1 for 0%R%:E/1%R:%E in ereal_scope
  • in classical_sets.v
    • lemma subset_bigsetU_cond
    • lemma eq_imagel
  • in sequences.v:
    • notations \sum_(i <oo) F i
    • lemmas ereal_pseries_sum_nat, lte_lim
    • lemmas is_cvg_ereal_nneg_natsum_cond, is_cvg_ereal_nneg_natsum
    • lemma ereal_pseriesD, ereal_pseries0, eq_ereal_pseries
    • lemmas leq_fact, prod_rev, fact_split
    • definition exp_coeff
    • lemmas exp_coeff_ge0, series_exp_coeff0, is_cvg_series_exp_coeff_pos, normed_series_exp_coeff, is_cvg_series_exp_coeff , cvg_exp_coeff
    • definition expR
  • in measure.v:
    • lemma eq_bigcupB_of_bigsetU
    • definitions caratheodory_type
    • definition caratheodory_measure and lemma caratheodory_measure_complete
    • internal definitions and lemmas that may be deprecated and hidden in the future:
      • caratheodory_measurable, notation ... .-measurable,
      • le_caratheodory_measurable, outer_measure_bigcup_lim, caratheodory_measurable_{set0,setC,setU_le,setU,bigsetU,setI,setD} disjoint_caratheodoryIU, caratheodory_additive, caratheodory_lim_lee, caratheodory_measurable_trivIset_bigcup, caratheodory_measurable_bigcup
    • definition measure_is_complete
  • file csum.v:
    • lemmas ereal_pseries_pred0, ub_ereal_sup_adherent_img
    • definition fsets, lemmas fsets_set0, fsets_self, fsetsP, fsets_img
    • definition fsets_ord, lemmas fsets_ord_nat, fsets_ord_subset
    • definition csum, lemmas csum0, csumE, csum_ge0, csum_fset csum_image, ereal_pseries_csum, csum_bigcup
    • notation \csum_(i in S) a i
  • file cardinality.v
    • lemmas in_inj_comp, enum0, enum_recr, eq_set0_nil, eq_set0_fset0, image_nat_maximum, fset_nat_maximum
    • defintion surjective, lemmas surjective_id, surjective_set0, surjective_image, surjective_image_eq0, surjective_comp
    • definition set_bijective,
    • lemmas inj_of_bij, sur_of_bij, set_bijective1, set_bijective_image, set_bijective_subset, set_bijective_comp
    • definition inverse
    • lemmas injective_left_inverse, injective_right_inverse, surjective_right_inverse,
    • notation `I_n
    • lemmas II0, II1, IIn_eq0, II_recr
    • lemmas set_bijective_D1, pigeonhole, Cantor_Bernstein
    • definition card_le, notation _ #<= _
    • lemmas card_le_surj, surj_card_le, card_lexx, card_le0x, card_le_trans, card_le0P, card_le_II
    • definition card_eq, notation _ #= _
    • lemmas card_eq_sym, card_eq_trans, card_eq00, card_eqP, card_eqTT, card_eq_II, card_eq_le, card_eq_ge, card_leP
    • lemma set_bijective_inverse
    • definition countable
    • lemmas countable0, countable_injective, countable_trans
    • definition set_finite
    • lemmas set_finiteP, set_finite_seq, set_finite_countable, set_finite0
    • lemma set_finite_bijective
    • lemmas subset_set_finite, subset_card_le
    • lemmas injective_set_finite, injective_card_le, set_finite_preimage
    • lemmas surjective_set_finite, surjective_card_le
    • lemmas set_finite_diff, card_le_diff
    • lemmas set_finite_inter_set0_union, set_finite_inter
    • lemmas ex_in_D, definitions min_of_D, min_of_D_seq, infsub_enum, lemmas min_of_D_seqE, increasing_infsub_enum, sorted_infsub_enum, injective_infsub_enum, subset_infsub_enum, infinite_nat_subset_countable
    • definition enumeration, lemmas enumeration_id, enumeration_set0.
    • lemma ex_enum_notin, definitions min_of, minf_of_e_seq, smallest_of
    • definition enum_wo_rep, lemmas enum_wo_repE, min_of_e_seqE, smallest_of_e_notin_enum_wo_rep, injective_enum_wo_rep, surjective_enum_wo_rep, set_bijective_enum_wo_rep, enumration_enum_wo_rep, countable_enumeration
    • lemmas infinite_nat, infinite_prod_nat, countable_prod_nat, countably_infinite_prod_nat

Changed

  • in classical_sets.v
    • lemma subset_bigsetU
    • notation f @` A defined as [set f x | x in A] instead of using image
  • in ereal.v:
    • change implicits of lemma lee_sum_nneg_ord
    • ereal_sup_ninfty and ereal_inf_pinfty made equivalences
    • change the notation {ereal R} to \bar R and attach it to the scope ereal_scope
    • argument of %:E in %R by default
    • F argument of \sum in %E by default
  • in topology.v:
    • change implicits of lemma cvg_app
  • in normedtype.v:
    • coord_continuous generalized
  • in sequences.v:
    • change implicits of lemma is_cvg_ereal_nneg_series
    • statements changed from using sum of ordinals to sum of nats
      • definition series
      • lemmas ereal_nondecreasing_series, ereal_nneg_series_lim_ge
      • lemmas is_cvg_ereal_nneg_series_cond, is_cvg_ereal_nneg_series
      • lemmas ereal_nneg_series_lim_ge0, ereal_nneg_series_pinfty

Renamed

  • in ereal.v:
    • er -> extended
    • ERFin -> EFin
    • ERPInf -> EPInf
    • ERNInf -> ENInf
    • real_of_er -> real_of_extended
    • real_of_erD -> real_of_extendedD
    • ERFin_real_of_er -> EFin_real_of_extended
    • real_of_er_expand -> real_of_extended_expand
    • NERFin -> NEFin
    • addERFin -> addEFin
    • sumERFin-> sumEFin
    • subERFin -> subEFin
  • in reals.v:
    • ler_ceil -> ceil_ge
    • Rceil_le -> le_Rceil
    • le_Rceil -> Rceil_ge
    • ge_Rfloor -> Rfloor_le
    • ler_floor -> floor_le
    • Rfloor_le -> le_Rfloor
  • in topology.v:
    • lemmas onT_can -> onS_can, onT_can_in -> onS_can_in, in_onT_can -> ``in_onS_can` (now in MathComp)
  • in sequences,v:
    • is_cvg_ereal_nneg_series_cond
  • in forms.v:
    • symmetric -> symmetric_form

Removed

  • in classical_sets.v
    • lemmas eq_set_inl, set_in_in
    • definition image
  • from topology.v:
    • lemmas homoRL_in, homoLR_in, homo_mono_in, monoLR_in, monoRL_in, can_mono_in, onW_can, onW_can_in, in_onW_can, onT_can, onT_can_in, in_onT_can (now in MathComp)
  • in forms.v:
    • lemma mxdirect_delta, row_mx_eq0, col_mx_eq0, map_mx_comp

[0.3.7] - 2021-04-01

Added

  • in topology.v:
    • global instance ball_filter
    • module regular_topology with an Exports submodule
      • canonicals pointedType, filteredType, topologicalType, uniformType, pseudoMetricType
    • module numFieldTopology with an Exports submodule
      • many canonicals and coercions
    • global instance Proper_nbhs'_regular_numFieldType
    • definition dense and lemma denseNE
  • in normedtype.v:
    • definitions ball_, pointed_of_zmodule, filtered_of_normedZmod
    • lemmas ball_norm_center, ball_norm_symmetric, ball_norm_triangle
    • definition pseudoMetric_of_normedDomain
    • lemma nbhs_ball_normE
    • global instances Proper_nbhs'_numFieldType, Proper_nbhs'_realType
    • module regular_topology with an Exports submodule
      • canonicals pseudoMetricNormedZmodType, normedModType.
    • module numFieldNormedType with an Exports submodule
      • many canonicals and coercions
      • exports Export numFieldTopology.Exports
    • canonical R_regular_completeType, R_regular_CompleteNormedModule
  • in reals.v:
    • lemmas Rfloor_lt0, floor_lt0, ler_floor, ceil_gt0, ler_ceil
    • lemmas has_sup1, has_inf1
  • in ereal.v:
    • lemmas ereal_ballN, le_ereal_ball, ereal_ball_ninfty_oversize, contract_ereal_ball_pinfty, expand_ereal_ball_pinfty, contract_ereal_ball_fin_le, contract_ereal_ball_fin_lt, expand_ereal_ball_fin_lt, ball_ereal_ball_fin_lt, ball_ereal_ball_fin_le, sumERFin, ereal_inf1, eqe_oppP, eqe_oppLRP, oppe_subset, ereal_inf_pinfty
    • definition er_map
    • definition er_map
    • lemmas adde_undefC, real_of_erD, fin_num_add_undef, addeK, subeK, subee, sube_le0, lee_sub
    • lemmas addeACA, muleC, mule1, mul1e, abseN
    • enable notation x \is a fin_num
      • definition fin_num, fact fin_num_key, lemmas fin_numE, fin_numP
  • in classical_sets.v:
    • notation [disjoint ... & ..]
    • lemmas mkset_nil, bigcup_mkset, bigcup_nonempty, bigcup0, bigcup0P, subset_bigcup_r, eqbigcup_r, eq_set_inl, set_in_in
  • in nngnum.v:
    • instance invr_nngnum
  • in posnum.v:
    • instance posnum_nngnum

Changed

  • in ereal.v:

    • generalize lemma lee_sum_nneg_subfset
    • lemmas nbhs_oo_up_e1, nbhs_oo_down_e1, nbhs_oo_up_1e, nbhs_oo_down_1e nbhs_fin_out_above, nbhs_fin_out_below, nbhs_fin_out_above_below nbhs_fin_inbound
  • in sequences.v:

    • generalize lemmas ereal_nondecreasing_series, is_cvg_ereal_nneg_series, ereal_nneg_series_lim_ge0, ereal_nneg_series_pinfty
  • in measure.v:

    • generalize lemma bigUB_of
    • generalize theorem Boole_inequality
  • in classical_sets.v:

    • change the order of arguments of subset_trans
  • canonicals and coercions have been changed so that there is not need anymore for explicit types casts to R^o, [filteredType R^o of R^o], [filteredType R^o * R^o of R^o * R^o], [lmodType R of R^o], [normedModType R of R^o],[topologicalType of R^o], [pseudoMetricType R of R^o]

  • sequences.v now imports numFieldNormedType.Exports

  • topology.v now imports reals

  • normedtype.v now imports vector, fieldext, falgebra, numFieldTopology.Exports

  • derive.v now imports numFieldNormedType.Exports

Renamed

  • in ereal.v:
    • is_realN -> fin_numN
    • is_realD -> fin_numD
    • ereal_sup_set0 -> ereal_sup0
    • ereal_sup_set1 -> ereal_sup1
    • ereal_inf_set0 -> ereal_inf0

Removed

  • in topology.v:
    • section numFieldType_canonical
  • in normedtype.v:
    • lemma R_ball
    • definition numFieldType_pseudoMetricNormedZmodMixin
    • canonical numFieldType_pseudoMetricNormedZmodType
    • global instance Proper_nbhs'_realType
    • lemma R_normZ
    • definition numFieldType_NormedModMixin
    • canonical numFieldType_normedModType
  • in ereal.v:
    • definition is_real

[0.3.6] - 2021-03-04

Added

  • in boolp.v:
    • lemmas iff_notr, iff_not2
  • in classical_sets.v:
    • lemmas subset_has_lbound, subset_has_ubound
    • lemma mksetE
    • definitions cover, partition, pblock_index, pblock
    • lemmas trivIsetP, trivIset_sets, trivIset_restr, perm_eq_trivIset
    • lemma fdisjoint_cset
    • lemmas setDT, set0D, setD0
    • lemmas setC_bigcup, setC_bigcap
  • in reals.v:
    • lemmas sup_setU, inf_setU
    • lemmas RtointN, floor_le0
    • definition Rceil, lemmas isint_Rceil, Rceil0, le_Rceil, Rceil_le, Rceil_ge0
    • definition ceil, lemmas RceilE, ceil_ge0, ceil_le0
  • in ereal.v:
    • lemmas esum_fset_ninfty, esum_fset_pinfty, esum_pinfty
  • in normedtype.v:
    • lemmas ereal_nbhs'_le, ereal_nbhs'_le_finite
    • lemmas ball_open
    • definition closed_ball_, lemmas closed_closed_ball_
    • definition closed_ball, lemmas closed_ballxx, closed_ballE, closed_ball_closed, closed_ball_subset, nbhs_closedballP, subset_closed_ball
    • lemmas nbhs0_lt, nbhs'0_lt, interior_closed_ballE, open_nbhs_closed_ball`
    • section "LinearContinuousBounded"
      • lemmas linear_boundedP, linear_continuous0, linear_bounded0, continuousfor0_continuous, linear_bounded_continuous, bounded_funP
  • in measure.v:
    • definition sigma_finite

Changed

  • in classical_sets.v:
    • generalization and change of trivIset (and thus lemmas trivIset_bigUI and trivIset_setI)
    • bigcup_distrr, bigcup_distrl generalized
  • header in normedtype.v, precisions on bounded_fun
  • in reals.v:
    • floor_ge0 generalized and renamed to floorR_ge_int
  • in ereal.v, ereal_scope notation scope:
    • x <= y notation changed to lee (x : er _) (y : er _) and only printing notation x <= y for lee x y
    • same change for <
    • change extended to notations _ <= _ <= _, _ < _ <= _, _ <= _ < _, _ < _ < _

Renamed

  • in reals.v:
    • floor -> Rfloor
    • isint_floor -> isint_Rfloor
    • floorE -> RfloorE
    • mem_rg1_floor -> mem_rg1_Rfloor
    • floor_ler -> Rfloor_ler
    • floorS_gtr -> RfloorS_gtr
    • floor_natz -> Rfloor_natz
    • Rfloor -> Rfloor0
    • floor1 -> Rfloor1
    • ler_floor -> ler_Rfloor
    • floor_le0 -> Rfloor_le0
    • ifloor -> floor
    • ifloor_ge0 -> floor_ge0
  • in topology.v:
    • ball_ler -> le_ball
  • in normedtype.v, bounded_on -> bounded_near
  • in measure.v:
    • AdditiveMeasure.Measure -> AdditiveMeasure.Axioms
    • OuterMeasure.OuterMeasure -> OuterMeasure.Axioms

Removed

  • in topology.v:
    • ball_le
  • in classical_sets.v:
    • lemma bigcapCU
  • in sequences.v:
    • lemmas ler_sum_nat, sumr_const_nat

[0.3.5] - 2020-12-21

Added

  • in classical_sets.v:
    • lemmas predeqP, seteqP

Changed

  • Requires:
    • MathComp >= 1.12
  • in boolp.v:
    • lemmas contra_not, contra_notT, contra_notN, contra_not_neq, contraPnot are now provided by MathComp 1.12
  • in normedtype.v:
    • lemmas ltr_distW, ler_distW are now provided by MathComp 1.12 as lemmas ltr_distlC_subl and ler_distl_subl
    • lemmas maxr_real and bigmaxr_real are now provided by MathComp 1.12 as lemmas max_real and bigmax_real
    • definitions isBOpen and isBClosed are replaced by the definition bound_side
    • definition Rhull now uses BSide instead of BOpen_if

Removed

  • Drop support for MathComp 1.11
  • in topology.v:
    • Typeclasses Opaque fmap.

[0.3.4] - 2020-12-12

Added

  • in classical_sets.v:
    • lemma bigcup_distrl
    • definition trivIset
    • lemmas trivIset_bigUI, trivIset_setI
  • in ereal.v:
    • definition mule and its notation * (scope ereal_scope)
    • definition abse and its notation `| | (scope ereal_scope)
  • in normedtype.v:
    • lemmas closure_sup, near_infty_natSinv_lt, limit_pointP
    • lemmas closure_gt, closure_lt
    • definition is_interval, is_intervalPle, interval_is_interval
    • lemma connected_intervalP
    • lemmas interval_open and interval_closed
    • lemmas inf_lb_strict, sup_ub_strict, interval_unbounded_setT, right_bounded_interior, interval_left_unbounded_interior, left_bounded_interior, interval_right_unbounded_interior, interval_bounded_interior
    • definition Rhull
    • lemma sub_Rhull, is_intervalP
  • in measure.v:
    • definition bigcup2, lemma bigcup2E
    • definitions isSemiRingOfSets, SemiRingOfSets, notation semiRingOfSetsType
    • definitions RingOfSets_from_semiRingOfSets, RingOfSets, notation ringOfSetsType
    • factory: isRingOfSets
    • definitions Measurable_from_ringOfSets, Measurable
    • lemma semiRingOfSets_measurable{I,D}
    • definition diff_fsets, lemmas semiRingOfSets_diff_fsetsE, semiRingOfSets_diff_fsets_disjoint
    • definitions isMeasurable
    • factory: isMeasurable
    • lemma bigsetU_measurable, measurable_bigcap
    • definitions semi_additive2, semi_additive, semi_sigma_additive
    • lemmas semi_additive2P, semi_additiveE, semi_additive2E, semi_sigma_additive_is_additive, semi_sigma_additiveE
    • Module AdditiveMeasure
      • notations additive_measure, {additive_measure set T -> {ereal R}}
    • lemmas measure_semi_additive2, measure_semi_additive, measure_semi_sigma_additive
    • lemma semi_sigma_additive_is_additive, canonical/coercion measure_additive_measure
    • lemma sigma_additive_is_additive
    • notations ringOfSetsType, outer_measure
    • definition negligible and its notation .-negligible
    • lemmas negligibleP, negligible_set0
    • definition almost_everywhere and its notation {ae mu, P}
    • lemma satisfied_almost_everywhere
    • definition sigma_subadditive
    • Module OuterMeasure
      • notation outer_measure, {outer_measure set T -> {ereal R}}
    • lemmas outer_measure0, outer_measure_ge0, le_outer_measure, outer_measure_sigma_subadditive, le_outer_measureIC
  • in boolp.v:
    • lemmas and3_asboolP, or3_asboolP, not_and3P
  • in classical_sets.v:
    • lemma bigcup_sup
  • in topology.v:
    • lemmas closure0, separatedC, separated_disjoint, connectedP, connected_subset, bigcup_connected
    • definition connected_component
    • lemma component_connected

Changed

  • in ereal.v:
    • notation x >= y defined as y <= x (only parsing) instead of gee
    • notation x > y defined as y < x (only parsing) instead of gte
    • definition mkset
    • lemma eq_set
  • in classical_sets.v:
    • notation [set x : T | P] now use definition mkset
  • in reals.v:
    • lemmas generalized from realType to numDomainType: setNK, memNE, lb_ubN, ub_lbN, nonemptyN, has_lb_ubN
    • lemmas generalized from realType to realDomainType: has_ubPn, has_lbPn

Renamed

  • in classical_sets.v:
    • subset_empty -> subset_nonempty
  • in measure.v:
    • sigma_additive_implies_additive -> sigma_additive_is_additive
  • in topology.v:
    • nbhs_of -> locally_of
  • in topology.v:
    • connect0 -> connected0

[0.3.3] - 2020-11-11

Added

  • in boolp.v:
    • lemma not_andP
    • lemma not_exists2P
  • in classical_sets.v:
    • lemmas setIIl, setIIr, setCS, setSD, setDS, setDSS, setCI, setDUr, setDUl, setIDA, setDD
    • definition dep_arrow_choiceType
    • lemma bigcup_set0
    • lemmas setUK, setKU, setIK, setKI, subsetEset, subEset, complEset, botEset, topEset, meetEset, joinEset, subsetPset, properPset
    • Canonical porderType, latticeType, distrLatticeType, blatticeType, tblatticeType, bDistrLatticeType, tbDistrLatticeType, cbDistrLatticeType, ctbDistrLatticeType
    • lemmas set0M, setM0, image_set0_set0, subset_set1, preimage_set0
    • lemmas setICr, setUidPl, subsets_disjoint, disjoints_subset, setDidPl, setIidPl, setIS, setSI, setISS, bigcup_recl, bigcup_distrr, setMT
    • new lemmas: lb_set1, ub_lb_set1, ub_lb_refl, lb_ub_lb
    • new definitions and lemmas: infimums, infimum, infimums_set1, is_subset1_infimum
    • new lemmas: ge_supremum_Nmem, le_infimum_Nmem, nat_supremums_neq0
    • lemmas setUCl, setDv
    • lemmas image_preimage_subset, image_subset, preimage_subset
    • definition proper and its notation <
    • lemmas setUK, setKU, setIK, setKI
    • lemmas setUK, setKU, setIK, setKI, subsetEset, subEset, complEset, botEset, topEset, meetEset, joinEset, properEneq
    • Canonical porderType, latticeType, distrLatticeType, blatticeType, tblatticeType, bDistrLatticeType, tbDistrLatticeType, cbDistrLatticeType, ctbDistrLatticeType on classical set.
  • file nngnum.v
  • in topology.v:
    • definition meets and its notation #
    • lemmas meetsC, meets_openr, meets_openl, meets_globallyl, meets_globallyr , meetsxx and proper_meetsxx.
    • definition limit_point
    • lemmas subset_limit_point, closure_limit_point, closure_subset, closureE, closureC, closure_id
    • lemmas cluster_nbhs, clusterEonbhs, closureEcluster
    • definition separated
    • lemmas connected0, connectedPn, connected_continuous_connected
    • lemmas closureEnbhs, closureEonbhs, limit_pointEnbhs, limit_pointEonbhs, closeEnbhs, closeEonbhs.
  • in ereal.v:
    • notation \+ (ereal_scope) for function addition
    • notations > and >= for comparison of extended real numbers
    • definition is_real, lemmas is_realN, is_realD, ERFin_real_of_er
    • basic lemmas: addooe, adde_Neq_pinfty, adde_Neq_ninfty, addERFin, subERFin, real_of_erN, lb_ereal_inf_adherent
    • arithmetic lemmas: oppeD, subre_ge0, suber_ge0, lee_add2lE, lte_add2lE, lte_add, lte_addl, lte_le_add, lte_subl_addl, lee_subr_addr, lee_subl_addr, lte_spaddr
    • lemmas gee0P, sume_ge0, lee_sum_nneg, lee_sum_nneg_ord, lee_sum_nneg_subset, lee_sum_nneg_subfset
    • lemma lee_addr
    • lemma lee_adde
    • lemma oppe_continuous
    • lemmas ereal_nbhs_pinfty_ge, ereal_nbhs_ninfty_le
  • in sequences.v:
    • definitions arithmetic, geometric, geometric_invn
    • lemmas increasing_series, cvg_shiftS, mulrn_arithmetic, exprn_geometric, cvg_arithmetic, cvg_expr, geometric_seriesE, cvg_geometric_series, is_cvg_geometric_series.
    • lemmas ereal_cvgN, ereal_cvg_ge0, ereal_lim_ge, ereal_lim_le
    • lemma ereal_cvg_real
    • lemmas is_cvg_ereal_nneg_series_cond, is_cvg_ereal_nneg_series, ereal_nneg_series_lim_ge0, ereal_nneg_series_pinfty
    • lemmas ereal_cvgPpinfty, ereal_cvgPninfty, lee_lim
    • lemma ereal_cvgD
      • with intermediate lemmas ereal_cvgD_pinfty_fin, ereal_cvgD_ninfty_fin, ereal_cvgD_pinfty_pinfty, ereal_cvgD_ninfty_ninfty
    • lemma ereal_limD
  • in normedtype.v:
    • lemma closed_ereal_le_ereal
    • lemma closed_ereal_ge_ereal
    • lemmas natmul_continuous, cvgMn and is_cvgMn.
    • uniformType structure for ereal

Changed

  • in classical_sets.v:
    • the index in bigcup_set1 generalized from nat to some Type
    • lemma bigcapCU generalized
    • lemmas preimage_setU and preimage_setI are about the setU and setI (instead of bigcup and bigcap)
    • eqEsubset changed from an implication to an equality
  • lemma asboolb moved from discrete.v to boolp.v
  • lemma exists2NP moved from discrete.v to boolp.v
  • lemma neg_or moved from discrete.v to boolp.v and renamed to not_orP
  • definitions dep_arrow_choiceClass and dep_arrow_pointedType slightly generalized and moved from topology.v to classical_sets.v
  • the types of the topological notions for numFieldType have been moved from normedtype.v to topology.v
  • the topology of extended real numbers has been moved from normedtype.v to ereal.v (including the notions of filters)
  • numdFieldType_lalgType in normedtype.v renamed to numFieldType_lalgType in topology.v
  • in ereal.v:
    • the first argument of real_of_er is now maximal implicit
    • the first argument of is_real is now maximal implicit
    • generalization of lee_sum
  • in boolp.v:
    • rename exists2NP to forall2NP and make it bidirectionnal
  • moved the definition of {nngnum _} and the related bigmax theory to the new nngnum.v file

Renamed

  • in classical_sets.v:
    • setIDl -> setIUl
    • setUDl -> setUIl
    • setUDr -> setUIr
    • setIDr -> setIUl
    • setCE -> setTD
    • preimage_setU -> preimage_bigcup, preimage_setI -> preimage_bigcap
  • in boolp.v:
    • contrap -> contra_not
    • contrapL -> contraPnot
    • contrapR -> contra_notP
    • contrapLR -> contraPP

Removed

  • in boolp.v:
    • contrapNN, contrapTN, contrapNT, contrapTT
    • eqNN
  • in normedtype.v:
    • forallN
    • eqNNP
    • existsN
  • in discrete.v:
    • existsP
    • existsNP
  • in topology.v:
    • close_to
    • close_cluster, which is subsumed by closeEnbhs

[0.3.2] - 2020-08-11

Added

  • in boolp.v, new lemma andC
  • in topology.v:
    • new lemma open_nbhsE
    • uniformType a structure for uniform spaces based on entourages (entourage)
    • uniformType structure on products, matrices, function spaces
    • definitions nbhs_, topologyOfEntourageMixin, split_ent, nbhsP, entourage_set, entourage_, uniformityOfBallMixin, nbhs_ball
    • lemmas nbhs_E, nbhs_entourageE, filter_from_entourageE, entourage_refl, entourage_filter, entourageT, entourage_inv, entourage_split_ex, split_entP, entourage_split_ent, subset_split_ent, entourage_split, nbhs_entourage, cvg_entourageP, cvg_entourage, cvg_app_entourageP, cvg_mx_entourageP, cvg_fct_entourageP, entourage_E, entourage_ballE, entourage_from_ballE, entourage_ball, entourage_proper_filter, open_nbhs_entourage, entourage_close
    • completePseudoMetricType structure
    • completePseudoMetricType structure on matrices and function spaces
  • in classical_sets.v:
    • lemmas setICr, setUidPl, subsets_disjoint, disjoints_subset, setDidPl, setIidPl, setIS, setSI, setISS, bigcup_recl, bigcup_distrr, setMT
  • in ereal.v:
    • notation \+ (ereal_scope) for function addition
    • notations > and >= for comparison of extended real numbers
    • definition is_real, lemmas is_realN, is_realD, ERFin_real_of_er, adde_undef
    • basic lemmas: addooe, adde_Neq_pinfty, adde_Neq_ninfty, addERFin, subERFin, real_of_erN, lb_ereal_inf_adherent
    • arithmetic lemmas: oppeD, subre_ge0, suber_ge0, lee_add2lE, lte_add2lE, lte_add, lte_addl, lte_le_add, lte_subl_addl, lee_subr_addr, lee_subl_addr, lte_spaddr, addeAC, addeCA
  • in normedtype.v:
    • lemmas natmul_continuous, cvgMn and is_cvgMn.
    • uniformType structure for ereal
  • in sequences.v:
    • definitions arithmetic, geometric
    • lemmas telescopeK, seriesK, increasing_series, cvg_shiftS, mulrn_arithmetic, exprn_geometric, cvg_arithmetic, cvg_expr, geometric_seriesE, cvg_geometric_series, is_cvg_geometric_series.

Changed

  • moved from normedtype.v to boolp.v and renamed:
    • forallN -> forallNE
    • existsN -> existsNE
  • topology.v:
    • unif_continuous uses entourage
    • pseudoMetricType inherits from uniformType
    • generic_source_filter and set_filter_source use entourages
    • cauchy is based on entourages and its former version is renamed cauchy_ball
    • completeType inherits from uniformType and not from pseudoMetricType
  • moved from posnum.v to Rbar.v: notation posreal
  • moved from normedtype.v to Rstruct.v:
    • definitions R_pointedType, R_filteredType, R_topologicalType, R_uniformType, R_pseudoMetricType
    • lemmas continuity_pt_nbhs, continuity_pt_cvg, continuity_ptE, continuity_pt_cvg', continuity_pt_nbhs', nbhs_pt_comp
    • lemmas close_trans, close_cvgxx, cvg_closeP and close_cluster are valid for a uniformType
    • moved continuous_withinNx from normedType.v to topology.v and generalised it to uniformType
  • moved from measure.v to sequences.v
    • ereal_nondecreasing_series
    • ereal_nneg_series_lim_ge (renamed from series_nneg)

Renamed

  • in classical_sets.v,
    • ub and lb are renamed to ubound and lbound
    • new lemmas:
      • setUCr, setCE, bigcup_set1, bigcapCU, subset_bigsetU
  • in boolp.v,
    • existsPN -> not_existsP
    • forallPN -> not_forallP
    • Nimply -> not_implyP
  • in classical_sets.v, ub and lb are renamed to ubound and lbound
  • in ereal.v:
    • eadd -> adde, eopp -> oppe
  • in topology.v:
    • locally -> nbhs
    • locally_filterE -> nbhs_filterE
    • locally_nearE -> nbhs_nearE
    • Module Export LocallyFilter -> Module Export NbhsFilter
    • locally_simpl -> nbhs_simpl
      • three occurrences
    • near_locally -> near_nbhs
    • Module Export NearLocally -> Module Export NearNbhs
    • locally_filter_onE -> nbhs_filter_onE
    • filter_locallyT -> filter_nbhsT
    • Global Instance locally_filter -> Global Instance nbhs_filter
    • Canonical locally_filter_on -> Canonical nbhs_filter_on
    • neigh -> open_nbhs
    • locallyE -> nbhsE
    • locally_singleton -> nbhs_singleton
    • locally_interior -> nbhs_interior
    • neighT -> open_nbhsT
    • neighI -> open_nbhsI
    • neigh_locally -> open_nbhs_nbhs
    • within_locallyW -> within_nbhsW
    • prod_loc_filter -> prod_nbhs_filter
    • prod_loc_singleton -> prod_nbhs_singleton
    • prod_loc_loc -> prod_nbhs_nbhs
    • mx_loc_filter -> mx_nbhs_filter
    • mx_loc_singleton -> mx_nbhs_singleton
    • mx_loc_loc -> mx_nbhs_nbhs
    • locally' -> nbhs'
    • locallyE' -> nbhsE'
    • Global Instance locally'_filter -> Global Instance nbhs'_filter
    • Canonical locally'_filter_on -> Canonical nbhs'_filter_on
    • locally_locally' -> nbhs_nbhs'
    • Global Instance within_locally_proper -> Global Instance within_nbhs_proper
    • locallyP -> nbhs_ballP
    • locally_ball -> nbhsx_ballx
    • neigh_ball -> open_nbhs_ball
    • mx_locally -> mx_nbhs
    • prod_locally -> prod_nbhs
    • Filtered.locally_op -> Filtered.nbhs_op
    • locally_of -> nbhs_of
    • open_of_locally -> open_of_nhbs
    • locally_of_open -> nbhs_of_open
    • locally_ -> nbhs_ball
    • lemma locally_ballE -> nbhs_ballE
    • locallyW -> nearW
    • nearW -> near_skip_subproof
    • locally_infty_gt -> nbhs_infty_gt
    • locally_infty_ge -> nbhs_infty_ge
    • cauchy_entouragesP -> cauchy_ballP
  • in normedtype.v:
    • locallyN -> nbhsN
    • locallyC -> nbhsC
    • locallyC_ball -> nbhsC_ball
    • locally_ex -> nbhs_ex
    • Global Instance Proper_locally'_numFieldType -> Global Instance Proper_nbhs'_numFieldType
    • Global Instance Proper_locally'_realType -> Global Instance Proper_nbhs'_realType
    • ereal_locally' -> ereal_nbhs'
    • ereal_locally -> ereal_nbhs
    • Global Instance ereal_locally'_filter -> Global Instance ereal_nbhs'_filter
    • Global Instance ereal_locally_filter -> Global Instance ereal_nbhs_filter
    • ereal_loc_singleton -> ereal_nbhs_singleton
    • ereal_loc_loc -> ereal_nbhs_nbhs
    • locallyNe -> nbhsNe
    • locallyNKe -> nbhsNKe
    • locally_oo_up_e1 -> nbhs_oo_up_e1
    • locally_oo_down_e1 -> nbhs_oo_down_e1
    • locally_oo_up_1e -> nbhs_oo_up_1e
    • locally_oo_down_1e -> nbhs_oo_down_1e
    • locally_fin_out_above -> nbhs_fin_out_above
    • locally_fin_out_below -> nbhs_fin_out_below
    • locally_fin_out_above_below -> nbhs_fin_out_above_below
    • locally_fin_inbound -> nbhs_fin_inbound
    • ereal_locallyE -> ereal_nbhsE
    • locally_le_locally_norm -> nbhs_le_locally_norm
    • locally_norm_le_locally -> locally_norm_le_nbhs
    • locally_locally_norm -> nbhs_locally_norm
    • filter_from_norm_locally -> filter_from_norm_nbhs
    • locally_ball_norm -> nbhs_ball_norm
    • locally_simpl -> nbhs_simpl
    • Global Instance filter_locally -> Global Instance filter_locally
    • locally_interval -> nbhs_interval
    • ereal_locally'_le -> ereal_nbhs'_le
    • ereal_locally'_le_finite -> ereal_nbhs'_le_finite
    • locally_image_ERFin -> nbhs_image_ERFin
    • locally_open_ereal_lt -> nbhs_open_ereal_lt
    • locally_open_ereal_gt -> nbhs_open_ereal_gt
    • locally_open_ereal_pinfty -> nbhs_open_ereal_pinfty
    • locally_open_ereal_ninfty -> nbhs_open_ereal_ninfty
    • continuity_pt_locally -> continuity_pt_nbhs
    • continuity_pt_locally' -> continuity_pt_nbhs'
    • nbhs_le_locally_norm -> nbhs_le_nbhs_norm
    • locally_norm_le_nbhs -> nbhs_norm_le_nbhs
    • nbhs_locally_norm -> nbhs_nbhs_norm
    • locally_normP -> nbhs_normP
    • locally_normE -> nbhs_normE
    • near_locally_norm -> near_nbhs_norm
    • lemma locally_norm_ball_norm -> nbhs_norm_ball_norm
    • locally_norm_ball -> nbhs_norm_ball
    • pinfty_locally -> pinfty_nbhs
    • ninfty_locally -> ninfty_nbhs
    • lemma locally_pinfty_gt -> nbhs_pinfty_gt
    • lemma locally_pinfty_ge -> nbhs_pinfty_ge
    • lemma locally_pinfty_gt_real -> nbhs_pinfty_gt_real
    • lemma locally_pinfty_ge_real -> nbhs_pinfty_ge_real
    • locally_minfty_lt -> nbhs_minfty_lt
    • locally_minfty_le -> nbhs_minfty_le
    • locally_minfty_lt_real -> nbhs_minfty_lt_real
    • locally_minfty_le_real -> nbhs_minfty_le_real
    • lt_ereal_locally -> lt_ereal_nbhs
    • locally_pt_comp -> nbhs_pt_comp
  • in derive.v:
    • derivable_locally -> derivable_nbhs
    • derivable_locallyP -> derivable_nbhsP
    • derivable_locallyx -> derivable_nbhsx
    • derivable_locallyxP -> derivable_nbhsxP
  • in sequences.v,
    • cvg_comp_subn -> cvg_centern,
    • cvg_comp_addn -> cvg_shiftn,
    • telescoping -> telescope
    • sderiv1_series -> seriesSB
    • telescopingS0 -> eq_sum_telescope

Removed

  • in topology.v:
    • definitions entourages, topologyOfBallMixin, ball_set
    • lemmas locally_E, entourages_filter, cvg_cauchy_ex

[0.3.1] - 2020-06-11

Added

  • in boolp.v, lemmas for classical reasoning existsNP, existsPN, forallNP, forallPN, Nimply, orC.
  • in classical_sets.v, definitions for supremums: ul, lb, supremum
  • in ereal.v:
    • technical lemmas lee_ninfty_eq, lee_pinfty_eq, lte_subl_addr, eqe_oppLR
    • lemmas about supremum: ereal_supremums_neq0
    • definitions:
      • ereal_sup, ereal_inf
    • lemmas about ereal_sup:
      • ereal_sup_ub, ub_ereal_sup, ub_ereal_sup_adherent
  • in normedtype.v:
    • function contract (bijection from {ereal R} to R)
    • function expand (that cancels contract)
    • ereal_pseudoMetricType R

Changed

  • in reals.v, pred replaced by set from classical_sets.v
    • change propagated in many files

[0.3.0] - 2020-05-26

This release is compatible with MathComp version 1.11+beta1.

The biggest change of this release is compatibility with MathComp 1.11+beta1. The latter introduces in particular ordered types. All norms and absolute values have been unified, both in their denotation `|_| and in their theory.

Added

  • sequences.v: Main theorems about sequences and series, and examples
    • Definitions:
      • [sequence E]_n is a special notation for fun n => E
      • series u_ is the sequence of partial sums
      • [normed S] is the series of absolute values, if S is a series
      • harmonic is the name of a sequence, apply series to them to get the series.
    • Theorems:
      • lots of helper lemmas to prove convergence of sequences
      • convergence of harmonic sequence
      • convergence of a series implies convergence of a sequence
      • absolute convergence implies convergence of series
  • in ereal.v: lemmas about extended reals' arithmetic
  • in normedtype.v: Definitions and lemmas about generic domination, boundedness, and lipschitz
    • See header for the notations and their localization
    • Added a bunch of combinators to extract existential witnesses
    • Added filter_forall (commutation between a filter and finite forall)
  • about extended reals:
    • equip extended reals with a structure of topological space
    • show that extended reals are hausdorff
  • in topology.v, predicate close
  • lemmas about bigmaxr and argmaxr
    • \big[max/x]_P F = F [arg max_P F]
    • similar lemma for bigmin
  • lemmas for within
  • add setICl (intersection of set with its complement)
  • prodnormedzmodule.v
    • ProdNormedZmodule transfered from MathComp
    • nonneg type for non-negative numbers
  • bigmaxr/bigminr library
  • Lemmas interiorI, setCU (complement of union is intersection of complements), setICl, nonsubset, setC0, setCK, setCT, preimage_setI/U, lemmas about image

Changed

  • in Rstruct.v, bigmaxr is now defined using bigop
  • inE now supports in_setE and in_fsetE
  • fix the definition of le_ereal, lt_ereal
  • various generalizations to better use the hierarchy of ssrnum (numDomainType, numFieldType, realDomainType, etc. when possible) in topology.v, normedtype.v, derive.v, etc.

Renamed

  • renaming flim to cvg
    • cvg corresponds to _ --> _
    • lim corresponds to lim _
    • continuous corresponds to continuity
    • some suffixes _opp, _add ... renamed to N, D, ...
  • big refactoring about naming conventions
    • complete the theory of cvg_, is_cvg_ and lim_ in normedtype.v with consistent naming schemes
    • fixed differential of inv which was defined on 1 / x instead of x^-1
    • two versions of lemmas on inverse exist
      • one in realType (Rinv_ lemmas), for which we have differential
      • a general one numFieldType (inv_ lemmas in normedtype.v, no differential so far, just continuity)
    • renamed cvg_norm to cvg_dist to reuse the name cvg_norm for convergence under the norm
  • Uniform renamed to PseudoMetric
  • rename is_prop to is_subset1

Removed

  • sub_trans (replaced by MathComp's subrKA)
  • derive.v does not require Reals anymore
  • Rbar.v is almost not used anymore

Infrastructure

  • NIX support
    • see config.nix, default.nix
    • for the CI also

Misc