Lastest releases: [0.5.3] - 2022-08-10 and [0.5.2] - 2022-06-08
- in
mathcomp_extra.v
:- lemma
big_const_idem
- lemma
big_id_idem
- lemma
big_rem_AC
- lemma
bigD1_AC
- lemma
big_mkcond_idem
- lemma
big_split_idem
- lemma
big_id_idem_AC
- lemma
bigID_idem
- lemmas
bigmax_le
andbigmax_lt
- lemma
bigmin_idr
- lemma
bigmax_idr
- lemma
- in file
boolp.v
:- lemmas
iter_compl
,iter_compr
,iter0
- lemmas
- in file
functions.v
:- lemmas
oinv_iter
,some_iter_inv
,inv_iter
, - Instances for functions interfaces for
iter
(partial inverse up to bijective function)
- lemmas
- in
classical_sets.v
:- lemma
preimage10P
- lemma
setT_unit
- lemma
subset_refl
- lemma
- in
ereal.v
:- notations
_ < _ :> _
and_ <= _ :> _
- lemmas
lee01
,lte01
,lee0N1
,lte0N1
- lemmas
lee_pmul2l
,lee_pmul2r
,lte_pmul
,lee_wpmul2l
- lemmas
lee_lt_add
,lee_lt_dadd
,lee_paddl
,lee_pdaddl
,lte_paddl
,lte_pdaddl
,lee_paddr
,lee_pdaddr
,lte_paddr
,lte_pdaddr
- lemmas
muleCA
,muleAC
,muleACA
- notations
- in
reals.v
:- lemmas
Rfloor_lt_int
,floor_lt_int
,floor_ge_int
- lemmas
ceil_ge_int
,ceil_lt_int
- lemmas
- in
lebesgue_integral.v
:- lemma
ge0_emeasurable_fun_sum
- lemma
integrableMr
- lemma
- in
ereal.v
:- generalize
lee_pmul
- simplify
lte_le_add
,lte_le_dadd
,lte_le_sub
,lte_le_dsub
- generalize
- in
measure.v
:- generalize
pushforward
- generalize
- in
lebesgue_integral.v
- change
Arguments
ofeq_integrable
- fix pretty-printing of
{mfun _ >-> _}
,{sfun _ >-> _}
,{nnfun _ >-> _}
- minor generalization of
eq_measure_integral
- change
- from
topology.v
tomathcomp_extra.v
:- generalize
ltr_bigminr
toporderType
and rename tobigmin_lt
- generalize
bigminr_ler
toorderType
and rename tobigmin_le
- generalize
- moved out of module
Bigminr
innormedtype.v
tomathcomp_extra.v
and generalized toorderType
:- lemma
bigminr_ler_cond
, renamed tobigmin_le_cond
- lemma
- moved out of module
Bigminr
innormedtype.v
tomathcomp_extra.v
:- lemma
bigminr_maxr
- lemma
- moved from from module
Bigminr
innormedtype.v
- to
mathcomp_extra.v
and generalized toorderType
bigminr_mkcond
->bigmin_mkcond
bigminr_split
->bigmin_split
bigminr_idl
->bigmin_idl
bigminrID
->bigminID
bigminrD1
->bigminD1
bigminr_inf
->bigmin_inf
bigminr_gerP
->bigmin_geP
bigminr_gtrP
->bigmin_gtP
bigminr_eq_arg
->bigmin_eq_arg
eq_bigminr
->eq_bigmin
- to
topology.v
and generalized toorderType
bigminr_lerP
->bigmin_leP
bigminr_ltrP
->bigmin_ltP
- to
- moved from
topology.v
tomathcomp_extra.v
:bigmax_lerP
->bigmax_leP
bigmax_ltrP
->bigmax_ltP
ler_bigmax_cond
->le_bigmax_cond
ler_bigmax
->le_bigmax
le_bigmax
->homo_le_bigmax
- in
ereal.v
:lee_pinfty_eq
->leye_eq
lee_ninfty_eq
->leeNy_eq
- in
classical_sets.v
:set_bool
->setT_bool
- in
topology.v
:bigmax_gerP
->bigmax_geP
bigmax_gtrP
->bigmax_gtP
- in
lebesgue_integral.v
:emeasurable_funeM
->measurable_funeM
- in
topology.v
:bigmax_seq1
,bigmax_pred1_eq
,bigmax_pred1
- in
normedtype.v
(moduleBigminr
)bigminr_ler_cond
,bigminr_ler
.bigminr_seq1
,bigminr_pred1_eq
,bigminr_pred1
- file
ereal.v
split in two filesconstructive_ereal.v
andereal.v
(the latter exports the former, so the "Require Import ereal" can just be kept unchanged)
- in file
classical_sets.v
- lemma
set_bool
- lemma
supremum_out
- definition
isLub
- lemma
supremum1
- lemma
trivIset_set0
- lemmas
trivIset_image
,trivIset_comp
- notation
trivIsets
- lemma
- in file
topology.v
:- definition
near_covering
- lemma
compact_near_coveringP
- lemma
continuous_localP
,equicontinuous_subset_id
- lemmas
precompact_pointwise_precompact
,precompact_equicontinuous
,Ascoli
- definition
frechet_filter
, instancesfrechet_properfilter
, andfrechet_properfilter_nat
- definition
principal_filter
discrete_space
- lemma
principal_filterP
,principal_filter_proper
,principal_filter_ultra
- canonical
bool_discrete_filter
- lemma
compactU
- lemma
discrete_sing
,discrete_nbhs
,discrete_open
,discrete_set1
,discrete_closed
,discrete_cvg
,discrete_hausdorff
- canonical
bool_discrete_topology
- definition
discrete_topological_mixin
- lemma
discrete_bool
,bool_compact
- definition
- in
Rstruct.v
:- lemmas
Rsupremums_neq0
,Rsup_isLub
,Rsup_ub
- lemmas
- in
reals.v
:- lemma
floor_natz
- lemma
opp_set_eq0
,ubound0
,lboundT
- lemma
- in file
lebesgue_integral.v
:- lemma
integrable0
- mixins
isAdditiveMeasure
,isMeasure0
,isMeasure
,isOuterMeasure
- structures
AdditiveMeasure
,Measure
,OuterMeasure
- notations
additive_measure
,measure
,outer_measure
- definition
mrestr
- lemmas
integral_measure_sum_nnsfun
,integral_measure_add_nnsfun
- lemmas
ge0_integral_measure_sum
,integral_measure_add
,integral_measure_series_nnsfun
,ge0_integral_measure_series
- lemmas
integrable_neg_fin_num
,integrable_pos_fin_num
- lemma
integral_measure_series
- lemmas
counting_dirac
,summable_integral_dirac
,integral_count
- lemmas
integrable_abse
,integrable_summable
,integral_bigcup
- lemma
- in
measure.v
:- lemmas
additive_measure_snum_subproof
,measure_snum_subproof
- canonicals
additive_measure_snum
,measure_snum
- definition
mscale
- definition
restr
- definition
counting
, canonicalmeasure_counting
- definition
discrete_measurable
, instantiated as ameasurableType
- lemma
sigma_finite_counting
- lemma
msum_mzero
- lemmas
- in
lebesgue_measure.v
:- lemma
diracE
- notation
_.-ocitv
- definition
ocitv_display
- lemma
- in file
cardinality.v
:- lemmas
trivIset_sum_card
,fset_set_sub
,fset_set_set0
- lemmas
- in file
sequences.v
:- lemmas
nat_dvg_real
,nat_cvgPpinfty
,nat_nondecreasing_is_cvg
- definition
nseries
, lemmasle_nseries
,cvg_nseries_near
,dvg_nseries
- lemmas
- in file
ereal.v
:- lemma
fin_num_abs
- lemma
- in file
esum.v
:- definition
summable
- lemmas
summable_pinfty
,summableE
,summableD
,summableN
,summableB
,summable_funepos
,summable_funeneg
- lemmas
summable_fine_sum
,summable_cvg
,summable_nneseries_lim
,summable_nnseries
,summable_nneseries_esum
,esumB
- lemma
fsbig_esum
- definition
- in
trigo.v
:- lemmas
cos1_gt0
,pi_ge2
- lemmas
pihalf_ge1
,pihalf_lt2
- lemmas
- in
measure.v
:- inductive
measure_display
- notation
_.-sigma
,_.-sigma.-measurable
,_.-ring
,_.-ring.-measurable
,_.-cara
,_.-cara.-measurable
,_.-caratheodory
,_.-prod
._.-prod.-measurable
- notation
_.-measurable
- lemma
measure_semi_additive_ord
,measure_semi_additive_ord_I
- lemma
decomp_finite_set
- inductive
- in
functions.v
:- lemma
patch_pred
,trivIset_restr
- lemma
has_sup1
,has_inf1
moved fromreals.v
toclassical_sets.v
- in
topology.v
:- generalize
cluster_cvgE
,fam_cvgE
,ptws_cvg_compact_family
- rewrite
equicontinuous
andpointwise_precompact
to use index
- generalize
- in
Rstruct.v
:- statement of lemma
completeness'
, renamed toRcondcomplete
- statement of lemma
real_sup_adherent
- statement of lemma
- in
ereal.v
:- statements of lemmas
ub_ereal_sup_adherent
,lb_ereal_inf_adherent
- statements of lemmas
- in
reals.v
:- definition
sup
- statements of lemmas
sup_adherent
,inf_adherent
- definition
- in
sequences.v
:- generalize
eq_nneseries
,nneseries0
- generalize
- in
mathcomp_extra.v
:- generalize
card_fset_sum1
- generalize
- in
lebesgue_integral.v
:- change the notation
\int_
product_measure1
takes a proof that the second measure is sigma-finiteproduct_measure2
takes a proof that the first measure is sigma-finite- definitions
integral
andintegrable
now take a function instead of a measure - remove one space in notation
\d_
- generalize
nondecreasing_series
- constant
measurableType
now take an addititional parameter of typemeasure_display
- change the notation
- in
measure.v
:measure0
is now a lemma- statement of lemmas
content_fin_bigcup
,measure_fin_bigcup
,ring_fsets
,decomp_triv
,cover_decomp
,decomp_set0
,decompN0
,Rmu_fin_bigcup
- definitions
decomp
,measure
- several constants now take a parameter of type
measure_display
- in
trigo.v
:- lemma
cos_exists
- lemma
- in
set_interval.v
:- generalize to numDomainType:
mem_1B_itvcc
,conv
,conv_id
,convEl
,convEr
,conv10
,conv0
,conv1
,conv_sym
,conv_flat
,leW_conv
,factor
,leW_factor
,factor_flat
,factorl
,ndconv
,ndconvE
- generalize to numFieldType
factorr
,factorK
,convK
,conv_inj
,factor_inj
,conv_bij
,factor_bij
,le_conv
,le_factor
,lt_conv
,lt_factor
,conv_itv_bij
,factor_itv_bij
,mem_conv_itv
,mem_conv_itvcc
,range_conv
,range_factor
- generalize to realFieldType:
mem_factor_itv
- generalize to numDomainType:
- in
fsbig.v
:- generalize
exchange_fsum
- generalize
- lemma
preimage_cst
generalized and moved fromlebesgue_integral.v
tofunctions.v
- lemma
fset_set_image
moved frommeasure.v
tocardinality.v
- in
reals.v
:- type generalization of
has_supPn
- type generalization of
- in
lebesgue_integral.v
:integralK
->integralrM
- in
trigo.v
:cos_pihalf_uniq
->cos_02_uniq
- in
measure.v
:sigma_algebraD
->sigma_algebraCD
g_measurable
->salgebraType
g_measurable_eqType
->salgebraType_eqType
g_measurable_choiceType
->salgebraType_choiceType
g_measurable_ptType
->salgebraType_ptType
- in
lebesgue_measure.v
:itvs
->ocitv_type
measurable_fun_sum
->emeasurable_fun_sum
- in
classical_sets.v
:trivIset_restr
->trivIset_widen
supremums_set1
->supremums1
infimums_set1
->infimums1
- in
Rstruct.v
:- definition
real_sup
- lemma
real_sup_is_lub
,real_sup_ub
,real_sup_out
- definition
- in
reals.v
:- field
sup
frommixin_of
in moduleReal
- field
- in
measure.v
:- notations
[additive_measure _ -> _]
,[measure _ -> _]
,[outer_measure _ -> _ ]
, - lemma
measure_is_additive_measure
- definitions
caratheodory_measure_mixin
,caratheodory_measure
- coercions
measure_to_nadditive_measure
,measure_additive_measure
- canonicals
measure_additive_measure
,set_ring_measure
,outer_measure_of_measure
,Hahn_ext_measure
- lemma
Rmu0
- lemma
measure_restrE
- notations
- in
measure.v
:- definition
g_measurableType
- notation
mu.-measurable
- definition
- in
mathcomp_extra.v
:- lemma
card_fset_sum1
- lemma
- in
classical_sets.v
:- lemma
preimage_setT
- lemma
bigsetU_bigcup
- lemmas
setI_II
andsetU_II
- lemma
- in
topology.v
:- definition
powerset_filter_from
- globals
powerset_filter_from_filter
- lemmas
near_small_set
,small_set_sub
- lemmas
withinET
,closureEcvg
,entourage_sym
,fam_nbhs
- generalize
cluster_cvgE
,ptws_cvg_compact_family
- lemma
near_compact_covering
- rewrite
equicontinuous
andpointwise_precompact
to use index - lemmas
ptws_cvg_entourage
,equicontinuous_closure
,ptws_compact_cvg
ptws_compact_closed
,ascoli_forward
,compact_equicontinuous
- definition
- in
normedtype.v
:- definition
bigcup_ointsub
- lemmas
bigcup_ointsub0
,open_bigcup_ointsub
,is_interval_bigcup_ointsub
,bigcup_ointsub_sub
,open_bigcup_rat
- lemmas
mulrl_continuous
andmulrr_continuous
.
- definition
- in
ereal.v
:- definition
expe
with notation^+
- definition
enatmul
with notation*+
(scope%E
) - definition
ednatmul
with notation*+
(scope%dE
) - lemmas
fineM
,enatmul_pinfty
,enatmul_ninfty
,EFin_natmul
,mule2n
,expe2
,mule_natl
- lemmas
ednatmul_pinfty
,ednatmul_ninfty
,EFin_dnatmul
,dmule2n
,ednatmulE
,dmule_natl
- lemmas
sum_fin_num
,sum_fin_numP
- lemmas
oppeB
,doppeB
,fineB
,dfineB
- lemma
abse1
- lemma
ltninfty_adde_def
- definition
- in
esum.v
:- lemma
esum_set1
- lemma
nnseries_interchange
- lemma
- in
cardinality.v
:- lemma
fset_set_image
,card_fset_set
,geq_card_fset_set
,leq_card_fset_set
,infinite_set_fset
,infinite_set_fsetP
andfcard_eq
.
- lemma
- in
sequences.v
:- lemmas
nneseriesrM
,ereal_series_cond
,ereal_series
,nneseries_split
- lemmas
lee_nneseries
- lemmas
- in
numfun.v
:- lemma
restrict_lee
- lemma
- in
measure.v
:- definition
pushforward
and canonicalpushforward_measure
- definition
dirac
with notation\d_
and canonicaldirac_measure
- lemmas
finite_card_dirac
,infinite_card_dirac
- lemma
eq_measure
- definition
msum
and canonicalmeasure_sum'
- definition
mzero
and canonicalmeasure_zero'
- definition
measure_add
and lemmameasure_addE
- definition
mseries
and canonicalmeasure_series'
- definition
- in
set_interval.v
:- lemma
opp_itv_infty_bnd
- lemma
- in
lebesgue_integral.v
:- lemmas
integral_set0
,ge0_integral_bigsetU
,ge0_integral_bigcup
- lemmas
- in
lebesgue_measure.v
:- lemmas
is_interval_measurable
,open_measurable
,continuous_measurable_fun
- lemma
emeasurable_funN
- lemmas
itv_bnd_open_bigcup
,itv_bnd_infty_bigcup
,itv_infty_bnd_bigcup
,itv_open_bnd_bigcup
- lemma
lebesgue_measure_set1
- lemma
lebesgue_measure_itv
- lemma
lebesgue_measure_rat
- lemmas
- in
lebesgue_integral.v
:- lemmas
integralM_indic
,integralM_indic_nnsfun
,integral_dirac
- lemma
integral_measure_zero
- lemma
eq_measure_integral
- lemmas
- in
mathcomp_extra.v
:- generalize
card_fset_sum1
- generalize
- in
classical_sets.v
:- lemma
some_bigcup
generalized and renamed toimage_bigcup
- lemma
- in
esumv
:- remove one hypothesis in lemmas
reindex_esum
,esum_image
- remove one hypothesis in lemmas
- moved from
lebesgue_integral.v
tolebesgue_measure.v
and generalized- hint
measurable_set1
/emeasurable_set1
- hint
- in
sequences.v
:- generalize
eq_nneseries
,nneseries0
- generalize
- in
set_interval.v
:- generalize
opp_itvoo
toopp_itv_bnd_bnd
- generalize
- in
lebesgue_integral.v
:- change the notation
\int_
- change the notation
- in
ereal.v
:num_abs_le
->num_abse_le
num_abs_lt
->num_abse_lt
addooe
->addye
addeoo
->addey
mule_ninfty_pinfty
->mulNyy
mule_pinfty_ninfty
->mulyNy
mule_pinfty_pinfty
->mulyy
mule_ninfty_ninfty
->mulNyNy
lte_0_pinfty
->lt0y
lte_ninfty_0
->ltNy0
lee_0_pinfty
->le0y
lee_ninfty_0
->leNy0
lte_pinfty
->ltey
lte_ninfty
->ltNye
lee_pinfty
->leey
lee_ninfty
->leNye
mulrpinfty_real
->real_mulry
mulpinftyr_real
->real_mulyr
mulrninfty_real
->real_mulrNy
mulninftyr_real
->real_mulNyr
mulrpinfty
->mulry
mulpinftyr
->mulyr
mulrninfty
->mulrNy
mulninftyr
->mulNyr
gt0_mulpinfty
->gt0_mulye
lt0_mulpinfty
->lt0_mulye
gt0_mulninfty
->gt0_mulNye
lt0_mulninfty
->lt0_mulNye
maxe_pinftyl
->maxye
maxe_pinftyr
->maxey
maxe_ninftyl
->maxNye
maxe_ninftyr
->maxeNy
mine_ninftyl
->minNye
mine_ninftyr
->mineNy
mine_pinftyl
->minye
mine_pinftyr
->miney
mulrinfty_real
->real_mulr_infty
mulrinfty
->mulr_infty
- in
realfun.v
:exp_continuous
->exprn_continuous
- in
sequences.v
:ereal_pseriesD
->nneseriesD
ereal_pseries0
->nneseries0
ereal_pseries_pred0
->nneseries_pred0
eq_ereal_pseries
->eq_nneseries
ereal_pseries_sum_nat
->nneseries_sum_nat
ereal_pseries_sum
->nneseries_sum
ereal_pseries_mkcond
->nneseries_mkcond
ereal_nneg_series_lim_ge
->nneseries_lim_ge
is_cvg_ereal_nneg_series_cond
->is_cvg_nneseries_cond
is_cvg_ereal_nneg_series
->is_cvg_nneseries
ereal_nneg_series_lim_ge0
->nneseries_lim_ge0
adde_def_nneg_series
->adde_def_nneseries
- in
esum.v
:ereal_pseries_esum
->nneseries_esum
- in
numfun.v
:funenng
->funepos
funennp
->funeneg
funenng_ge0
->funepos_ge0
funennp_ge0
->funeneg_ge0
funenngN
->funeposN
funennpN
->funenegN
funenng_restrict
->funepos_restrict
funennp_restrict
->funeneg_restrict
ge0_funenngE
->ge0_funeposE
ge0_funennpE
->ge0_funenegE
le0_funenngE
->le0_funeposE
le0_funennpE
->le0_funenegE
gt0_funenngM
->gt0_funeposM
gt0_funennpM
->gt0_funenegM
lt0_funenngM
->lt0_funeposM
lt0_funennpM
->lt0_funenegM
funenngnnp
->funeposneg
add_def_funennpg
->add_def_funeposneg
funeD_Dnng
->funeD_Dpos
funeD_nngD
->funeD_posD
- in
lebesgue_measure.v
:emeasurable_fun_funenng
->emeasurable_fun_funepos
emeasurable_fun_funennp
->emeasurable_fun_funeneg
- in
lebesgue_integral.v
:integrable_funenng
->integrable_funepos
integrable_funennp
->integrable_funeneg
integral_funennp_lt_pinfty
->integral_funeneg_lt_pinfty
integral_funenng_lt_pinfty
->integral_funepos_lt_pinfty
ae_eq_funenng_funennp
->ae_eq_funeposneg
- in
mathcomp_extra.v
:- lemmas
natr_absz
,ge_pinfty
,le_ninfty
,gt_pinfty
,lt_ninfty
- lemmas
- in
classical_sets.v
:- notation
[set of _]
- notation
- in
topology.v
:- lemmas
inj_can_sym_in_on
,inj_can_sym_on
,inj_can_sym_in
- lemmas
- in
signed.v
:- notations
%:nngnum
and%:posnum
- notations
- in
ereal.v
:- notations
{posnum \bar R}
and{nonneg \bar R}
- notations
%:pos
and%:nng
inereal_dual_scope
andereal_scope
- variants
posnume_spec
andnonnege_spec
- definitions
posnume
,nonnege
,abse_reality_subdef
,ereal_sup_reality_subdef
,ereal_inf_reality_subdef
- lemmas
ereal_comparable
,pinfty_snum_subproof
,ninfty_snum_subproof
,EFin_snum_subproof
,fine_snum_subproof
,oppe_snum_subproof
,adde_snum_subproof
,dadde_snum_subproof
,mule_snum_subproof
,abse_reality_subdef
,abse_snum_subproof
,ereal_sup_snum_subproof
,ereal_inf_snum_subproof
,num_abse_eq0
,num_lee_maxr
,num_lee_maxl
,num_lee_minr
,num_lee_minl
,num_lte_maxr
,num_lte_maxl
,num_lte_minr
,num_lte_minl
,num_abs_le
,num_abs_lt
,posnumeP
,nonnegeP
- signed instances
pinfty_snum
,ninfty_snum
,EFin_snum
,fine_snum
,oppe_snum
,adde_snum
,dadde_snum
,mule_snum
,abse_snum
,ereal_sup_snum
,ereal_inf_snum
- notations
- in
functions.v
:addrfunE
renamed toaddrfctE
and generalized toType
,zmodType
opprfunE
renamed toopprfctE
and generalized toType
,zmodType
- moved from
functions.v
toclassical_sets.v
- lemma
subsetW
, definitionsubsetCW
- lemma
- in
mathcomp_extra.v
:- fix notation
ltLHS
- fix notation
- in
topology.v
:open_bigU
->bigcup_open
- in
functions.v
:mulrfunE
->mulrfctE
scalrfunE
->scalrfctE
exprfunE
->exprfctE
valLr
->valR
valLr_fun
->valR_fun
valLrK
->valRK
oinv_valLr
->oinv_valR
valLr_inj_subproof
->valR_inj_subproof
valLr_surj_subproof
->valR_surj_subproof
- in
measure.v
:measurable_bigcup
->bigcupT_measurable
measurable_bigcap
->bigcapT_measurable
measurable_bigcup_rat
->bigcupT_measurable_rat
- in
lebesgue_measure.v
:emeasurable_bigcup
->bigcupT_emeasurable
- files
posnum.v
andnngnum.v
(both subsumed bysigned.v
) - in
topology.v
:ltr_distlC
,ler_distlC
- in
mathcomp_extra.v
:- lemma
all_sig2_cond
- definition
olift
- lemmas
obindEapp
,omapEbind
,omapEapp
,oappEmap
,omap_comp
,oapp_comp
,oapp_comp_f
,olift_comp
,compA
,can_in_pcan
,pcan_in_inj
,can_in_comp
,pcan_in_comp
,ocan_comp
,pred_omap
,ocan_in_comp
,eqbLR
,eqbRL
- definition
opp_fun
, notation\-
- definition
mul_fun
, notation\*
- definition
max_fun
, notation\max
- lemmas
gtr_opp
,le_le_trans
- notations
eqLHS
,eqRHS
,leLHS
,leRHS
,ltLHS
,lrRHS
- inductive
boxed
- lemmas
eq_big_supp
,perm_big_supp_cond
,perm_big_supp
- lemmma
mulr_ge0_gt0
- lemmas
lt_le
,gt_ge
- coercion
pair_of_interval
- lemmas
ltBSide
,leBSide
- multirule
lteBSide
- lemmas
ltBRight_leBLeft
,leBRight_ltBLeft
- multirule
bnd_simp
- lemmas
itv_splitU1
,itv_split1U
- definition
miditv
- lemmas
mem_miditv
,miditv_bnd2
,miditv_bnd1
- lemmas
predC_itvl
,predC_itvr
,predC_itv
- lemma
- in
boolp.v
:- lemmas
cid2
,propeqP
,funeqP
,funeq2P
,funeq3P
,predeq2P
,predeq3P
- hint
Prop_irrelevance
- lemmas
pselectT
,eq_opE
- definition
classicType
, canonicalsclassicType_eqType
,classicType_choiceType
, notation{classic ...}
- definition
eclassicType
, canonicalseclassicType_eqType
,eclassicType_choiceType
, notation{eclassic ...}
- definition
canonical_of
, notationscanonical_
,canonical
, lemmacanon
- lemmas
Peq
,Pchoice
,eqPchoice
- lemmas
contra_notT
,contraPT
,contraTP
,contraNP
,contraNP
,contra_neqP
,contra_eqP
- lemmas
forallPNP
,existsPNP
- module
FunOrder
, lemmalefP
- lemmas
meetfE
andjoinfE
- lemmas
- in
classical_sets.v
:- notations
[set: ...]
,*`
,`*
- definitions
setMR
andsetML
,disj_set
- coercion
set_type
, definitionSigSub
- lemmas
set0fun
,set_mem
,mem_setT
,mem_setK
,set_memK
,memNset
,setTPn
,in_set0
,in_setT
,in_setC
,in_setI
,in_setD
,in_setU
,in_setM
,set_valP
,set_true
,set_false
,set_andb
,set_orb
,fun_true
,fun_false
,set_mem_set
,mem_setE
,setDUK
,setDUK
,setDKU
,setUv
,setIv
,setvU
,setvI
,setUCK
,setUKC
,setICK
,setIKC
,setDIK
,setDKI
,setI1
,set1I
,subsetT
,disj_set2E
,disj_set2P
,disj_setPS
,disj_set_sym
,disj_setPCl
,disj_setPCr
,disj_setPLR
,disj_setPRL
,setF_eq0
,subsetCl
,subsetCr
,subsetC2
,subsetCP
,subsetCPl
,subsetCPr
,subsetUl
,subsetUr
,setDidl
,subIsetl
,subIsetr
,subDsetl
,subDsetr
setUKD
,setUDK
,setUIDK
,bigcupM1l
,bigcupM1r
,pred_omapE
,pred_omap_set
- hints
subsetUl
,subsetUr
,subIsetl
,subIsetr
,subDsetl
,subDsetr
- lemmas
image2E
- lemmas
Iiota
,ordII
,IIord
,ordIIK
,IIordK
- lemmas
set_imfset
,imageT
- hints
imageP
,imageT
- lemmas
homo_setP
,image_subP
,image_sub
,subset_set2
- lemmas
eq_preimage
,comp_preimage
,preimage_id
,preimage_comp
,preimage_setI_eq0
,preimage0eq
,preimage0
,preimage10
, - lemmas
some_set0
,some_set1
,some_setC
,some_setR
,some_setI
,some_setU
,some_setD
,sub_image_some
,sub_image_someP
,image_some_inj
,some_set_eq0
,some_preimage
,some_image
,disj_set_some
- lemmas
some_bigcup
,some_bigcap
,bigcup_set_type
,bigcup_mkcond
,bigcup_mkcondr
,bigcup_mkcondl
,bigcap_mkcondr
,bigcap_mkcondl
,bigcupDr
,setD_bigcupl
,bigcup_bigcup_dep
,bigcup_bigcup
,bigcupID
.bigcapID
- lemmas
bigcup2inE
,bigcap2
,bigcap2E
,bigcap2inE
- lemmas
bigcup_sub
,sub_bigcap
,subset_bigcup
,subset_bigcap
,bigcap_set_type
,bigcup_pred
- lemmas
bigsetU_bigcup2
,bigsetI_bigcap2
- lemmas
in1TT
,in2TT
,in3TT
,inTT_bij
- canonical
option_pointedType
- notations
[get x | E]
,[get x : T | E]
- variant
squashed
, notation$| ... |
, tactic notationsquash
- definition
unsquash
, lemmaunsquashK
- module
Empty
that declares the typeemptyType
with the expected[emptyType of ...]
notations - canonicals
False_emptyType
andvoid_emptyType
- definitions
no
andany
- lemmas
empty_eq0
- definition
quasi_canonical_of
, notationsquasi_canonical_
,quasi_canonical
, lemmaqcanon
- lemmas
choicePpointed
,eqPpointed
,Ppointed
- lemmas
trivIset_setIl
,trivIset_setIr
,sub_trivIset
,trivIset_bigcup2
- definition
smallest
- lemmas
sub_smallest
,smallest_sub
,smallest_id
- lemma and hint
sub_gen_smallest
- lemmas
sub_smallest2r
,sub_smallest2l
- lemmas
preimage_itv
,preimage_itv_o_infty
,preimage_itv_c_infty
,preimage_itv_infty_o
,preimage_itv_infty_c
,notin_setI_preimage
- definitions
xsection
,ysection
- lemmas
xsection0
,ysection0
,in_xsectionM
,in_ysectionM
,notin_xsectionM
,notin_ysectionM
,xsection_bigcup
,ysection_bigcup
,trivIset_xsection
,trivIset_ysection
,le_xsection
,le_ysection
,xsectionD
,ysectionD
- notations
- in
topology.v
:- lemma
filter_pair_set
- definition
prod_topo_apply
- lemmas
prod_topo_applyE
,prod_topo_apply_continuous
,hausdorff_product
- lemmas
closedC
,openC
- lemmas
continuous_subspace_in
- lemmas
closed_subspaceP
,closed_subspaceW
,closure_subspaceW
- lemmas
nbhs_subspace_subset
,continuous_subspaceW
,nbhs_subspaceT
,continuous_subspaceT_for
,continuous_subspaceT
,continuous_open_subspace
- globals
subspace_filter
,subspace_proper_filter
- notation
{within ..., continuous ...}
- definitions
compact_near
,precompact
,locally_compact
- lemmas
precompactE
,precompact_subset
,compact_precompact
,precompact_closed
- definitions
singletons
,equicontinuous
,pointwise_precompact
- lemmas
equicontinuous_subset
,equicontinuous_cts
- lemmas
pointwise_precomact_subset
,pointwise_precompact_precompact
uniform_pointwise_compact
,compact_pointwise_precompact
- lemmas
compact_set1
,uniform_set1
,ptws_cvg_family_singleton
,ptws_cvg_compact_family
- lemmas
connected1
,connectedU
- lemmas
connected_component_sub
,connected_component_id
,connected_component_out
,connected_component_max
,connected_component_refl
,connected_component_cover
,connected_component_cover
,connected_component_trans
,same_connected_component
- lemma
continuous_is_cvg
- lemmas
uniform_limit_continuous
,uniform_limit_continuous_subspace
- lemma
- in
normedtype.v
- generalize
IVT
with subspace topology - lemmas
abse_continuous
,cvg_abse
,is_cvg_abse
,EFin_lim
,near_infty_natSinv_expn_lt
- generalize
- in
reals.v
:- lemmas
sup_gt
,inf_lt
,ltr_add_invr
- lemmas
- in
ereal.v
:- lemmas
esum_ninftyP
,esum_pinftyP
- lemmas
addeoo
,daddeoo
- lemmas
desum_pinftyP
,desum_ninftyP
- lemmas
lee_pemull
,lee_nemul
,lee_pemulr
,lee_nemulr
- lemma
fin_numM
- definition
mule_def
, notationx *? y
- lemma
mule_defC
- notations
\*
inereal_scope
, andereal_dual_scope
- lemmas
mule_def_fin
,mule_def_neq0_infty
,mule_def_infty_neq0
,neq0_mule_def
- notation
\-
inereal_scope
andereal_dual_scope
- lemma
fin_numB
- lemmas
mule_eq_pinfty
,mule_eq_ninfty
- lemmas
fine_eq0
,abse_eq0
- lemmas
EFin_inj
,EFin_bigcup
,EFin_setC
,adde_gt0
,mule_ge0_gt0
,lte_mul_pinfty
,lt0R
,adde_defEninfty
,lte_pinfty_eq
,ge0_fin_numE
,eq_pinftyP
, - canonical
mule_monoid
- lemmas
preimage_abse_pinfty
,preimage_abse_ninfty
- notation
\-
- lemmas
fin_numEn
,fin_numPn
,oppe_eq0
,ltpinfty_adde_def
,gte_opp
,gte_dopp
,gt0_mulpinfty
,lt0_mulpinfty
,gt0_mulninfty
,lt0_mulninfty
,eq_infty
,eq_ninfty
,hasNub_ereal_sup
,ereal_sup_EFin
,ereal_inf_EFin
,restrict_abse
- canonical
ereal_pointed
- lemma
seq_psume_eq0
- lemmas
lte_subl_addl
,lte_subr_addl
,lte_subel_addr
,lte_suber_addr
,lte_suber_addl
,lee_subl_addl
,lee_subr_addl
,lee_subel_addr
,lee_subel_addl
,lee_suber_addr
,lee_suber_addl
- lemmas
lte_dsubl_addl
,lte_dsubr_addl
,lte_dsubel_addr
,lte_dsuber_addr
,lte_dsuber_addl
,lee_dsubl_addl
,lee_dsubr_addl
,lee_dsubel_addr
,lee_dsubel_addl
,lee_dsuber_addr
,lee_dsuber_addl
- lemmas
realDe
,realDed
,realMe
,nadde_eq0
,padde_eq0
,adde_ss_eq0
,ndadde_eq0
,pdadde_eq0
,dadde_ss_eq0
,mulrpinfty_real
,mulpinftyr_real
,mulrninfty_real
,mulninftyr_real
,mulrinfty_real
- lemmas
- in
sequences.v
:- lemmas
ereal_cvgM_gt0_pinfty
,ereal_cvgM_lt0_pinfty
,ereal_cvgM_gt0_ninfty
,ereal_cvgM_lt0_ninfty
,ereal_cvgM
- definition
eseries
with notation[eseries E]_n
- lemmas
eseriesEnat
,eseriesEord
,eseriesSr
,eseriesS
,eseriesSB
,eseries_addn
,sub_eseries_geq
,sub_eseries
,sub_double_eseries
,eseriesD
- lemmas
- definition
etelescope
- lemmas
ereal_cvgB
,nondecreasing_seqD
,lef_at
- lemmas
lim_mkord
,ereal_pseries_mkcond
,ereal_pseries_sum
- definition
sdrop
- lemmas
has_lbound_sdrop
,has_ubound_sdrop
- definitions
sups
,infs
- lemmas
supsN
,infsN
,nonincreasing_sups
,nondecreasing_infs
,is_cvg_sups
,is_cvg_infs
,infs_le_sups
,cvg_sups_inf
,cvg_infs_sup
,sups_preimage
,infs_preimage
,bounded_fun_has_lbound_sups
,bounded_fun_has_ubound_infs
- definitions
lim_sup
,lim_inf
- lemmas
lim_infN
,lim_supE
,lim_infE
,lim_inf_le_lim_sup
,cvg_lim_inf_sup
,cvg_lim_infE
,cvg_lim_supE
,cvg_sups
,cvg_infs
,le_lim_supD
,le_lim_infD
,lim_supD
,lim_infD
- definitions
esups
,einfs
- lemmas
esupsN
,einfsN
,nonincreasing_esups
,nondecreasing_einfs
,einfs_le_esups
,cvg_esups_inf
,is_cvg_esups
,cvg_einfs_sup
,is_cvg_einfs
,esups_preimage
,einfs_preimage
- definitions
elim_sup
,elim_inf
- lemmas
elim_infN
,elim_supN
,elim_inf_sup
,elim_inf_sup
,cvg_ninfty_elim_inf_sup
,cvg_ninfty_einfs
,cvg_ninfty_esups
,cvg_pinfty_einfs
,cvg_pinfty_esups
,cvg_esups
,cvg_einfs
,cvg_elim_inf_sup
,is_cvg_elim_infE
,is_cvg_elim_supE
- lemmas
elim_inf_shift
,elim_sup_le_cvg
- lemmas
- in
derive.v
- lemma
MVT_segment
- lemma
derive1_cst
- lemma
- in
realfun.v
:- lemma
continuous_subspace_itv
- lemma
- in
esum.v
(wascsum.v
):- lemmas
sum_fset_set
,esum_ge
,esum0
,le_esum
,eq_esum
,esumD
,esum_mkcond
,esum_mkcondr
,esum_mkcondl
,esumID
,esum_sum
,esum_esum
,lee_sum_fset_nat
,lee_sum_fset_lim
,ereal_pseries_esum
,reindex_esum
,esum_pred_image
,esum_set_image
,esum_bigcupT
- lemmas
- in
cardinality.v
:- notations
#>=
,#=
,#!=
- scope
card_scope
, delimitercard
- notation
infinite_set
- lemmas
injPex
,surjPex
,bijPex
,surjfunPex
,injfunPex
- lemmas
inj_card_le
,pcard_leP
,pcard_leTP
,pcard_injP
,ppcard_leP
- lemmas
pcard_eq
,pcard_eqP
,card_bijP
,card_eqVP
,card_set_bijP
- lemmas
ppcard_eqP
,card_eqxx
,inj_card_eq
,card_some
,card_image
,card_imsub
- hint
card_eq00
- lemmas
empty_eq0
,card_le_emptyl
,card_le_emptyr
- multi-rule
emptyE_subdef
- lemmas
card_eq_le
,card_eqPle
,card_leT
,card_image_le
- lemmas
card_le_eql
,card_le_eqr
,card_eql
,card_eqr
,card_ge_image
,card_le_image
,card_le_image2
,card_eq_image
,card_eq_imager
,card_eq_image2
- lemmas
card_ge_some
,card_le_some
,card_le_some2
,card_eq_somel
,card_eq_somer
,card_eq_some2
- lemmas
card_eq_emptyr
,card_eq_emptyl
,emptyE
- lemma and hint
card_setT
- lemma and hint
card_setT_sym
- lemmas
surj_card_ge
,pcard_surjP
,pcard_geP
,ocard_geP
,pfcard_geP
- lemmas
ocard_eqP
,oocard_eqP
,sub_setP
,card_subP
- lemmas
eq_countable
,countable_set_countMixin
,countableP
,sub_countable
- lemmas
card_II
,finite_fsetP
,finite_subfsetP
,finite_seqP
,finite_fset
,finite_finpred
,finite_finset
,infiniteP
,finite_setPn
- lemmas
card_le_finite
,finite_set_leP
,card_ge_preimage
,eq_finite_set
,finite_image
- lemma and hint
finite_set1
- lemmas
finite_setU
,finite_set2
,finite_set3
,finite_set4
,finite_set5
,finite_set6
,finite_set7
,finite_setI
,finite_setIl
,finite_setIr
,finite_setM
,finite_image2
,finite_image11
- definition
fset_set
- lemmas
fset_setK
,in_fset_set
,fset_set0
,fset_set1
,fset_setU
,fset_setI
,fset_setU1
,fset_setD
,fset_setD1
,fset_setM
- definitions
fst_fset
,snd_fset
, notations.`1
,.`2
- lemmas
finite_set_fst
,finite_set_snd
,bigcup_finite
,finite_setMR
,finite_setML
,fset_set_II
,set_fsetK
,fset_set_inj
,bigsetU_fset_set
,bigcup_fset_set
,bigsetU_fset_set_cond
,bigcup_fset_set_cond
,bigsetI_fset_set
,bigcap_fset_set
,super_bij
,card_eq_fsetP
,card_IID
,finite_set_bij
- lemmas
countable1
,countable_fset
- lemma and hint
countable_finpred
- lemmas
eq_card_nat
- canonical
rat_pointedType
- lemmas
infinite_rat
,card_rat
,choicePcountable
,eqPcountable
,Pcountable
,bigcup_countable
,countableMR
,countableM
,countableML
,infiniteMRl
,cardMR_eq_nat
- mixin
FiniteImage
, structureFImFun
, notations{fumfun ... >-> ...}
,[fimfun of ...]
, hintfimfunP
- lemma and hint
fimfun_inP
- definitions
fimfun
,fimfun_key
, canonicalfimfun_keyed
- definitions
fimfun_Sub_subproof
,fimfun_Sub
- lemmas
fimfun_rect
,fimfun_valP
,fimfuneqP
- definitions and canonicals
fimfuneqMixin
,fimfunchoiceMixin
- lemma
finite_image_cst
,cst_fimfun_subproof
,fimfun_cst
- definition
cst_fimfun
- lemma
comp_fimfun_subproof
- lemmas
fimfun_zmod_closed
,fimfunD
,fimfunN
,fimfunB
,fimfun0
,fimfun_sum
- canonicals
fimfun_add
,fimfun_zmod
,fimfun_zmodType
- definition
fimfun_zmodMixin
- notations
- in
measure.v
:- definitions
setC_closed
,setI_closed
,setU_closed
,setD_closed
,setDI_closed
,fin_bigcap_closed
,finN0_bigcap_closed
,fin_bigcup_closed
,semi_setD_closed
,ndseq_closed
,trivIset_closed
,fin_trivIset_closed
,set_ring
,sigma_algebra
,dynkin
,monotone_classes
- notations
<<m D, G >>
,<<m G >>
,<<s D, G>>
,<<s G>>
,<<d G>>
,<<r G>>
,<<fu G>>
- lemmas
fin_bigcup_closedP
,finN0_bigcap_closedP
,sedDI_closedP
,sigma_algebra_bigcap
,sigma_algebraP
- lemma and hint
smallest_sigma_algebra
- lemmas
sub_sigma_algebra2
,sigma_algebra_id
,sub_sigma_algebra
,sigma_algebra0
,sigma_algebraD
,sigma_algebra_bigcup
- lemma and hint
smallest_setring
, lemma and hintsetring0
- lemmas
sub_setring2
,setring_id
,sub_setring
,setringDI
,setringU
,setring_fin_bigcup
,monotone_class_g_salgebra
- lemmas
smallest_monotone_classE
,monotone_class_subset
,dynkinT
,dynkinC
,dynkinU
,dynkin_monotone
,dynkin_g_dynkin
,sigma_algebra_dynkin
,dynkin_setI_bigsetI
,dynkin_setI_sigma_algebra
,setI_closed_gdynkin_salgebra
- factories
isRingOfSets
,isAlgebraOfSets
- lemmas
fin_bigcup_measurable
,fin_bigcap_measurable
,sigma_algebra_measurable
,sigma_algebraC
- definition
measure_restr
, lemmameasure_restrE
- definition
g_measurableType
- lemmas
measurable_g_measurableTypeE
- lemmas
measurable_fun_id
,measurable_fun_comp
,eq_measurable_fun
,measurable_fun_cst
,measurable_funU
,measurable_funS
,measurable_fun_ext
,measurable_restrict
- definitions
preimage_class
andimage_class
- lemmas
preimage_class_measurable_fun
,sigma_algebra_preimage_class
,sigma_algebra_image_class
,sigma_algebra_preimage_classE
,measurability
- definition
sub_additive
- lemma
semi_additiveW
- lemmas
content_fin_bigcup
,measure_fin_bigcup
,measure_bigsetU_ord_cond
,measure_bigsetU_ord
, - coercion
measure_to_nadditive_measure
- lemmas
measure_semi_bigcup
,measure_bigcup
- hint
measure_ge0
- lemma
big_trivIset
- defintion
covered_by
- module
SetRing
- lemmas
ring_measurableE
,ring_fsets
- definition
decomp
- lemmas
decomp_triv
,decomp_triv
,decomp_neq0
,decomp_neq0
,decomp_measurable
,cover_decomp
,decomp_sub
,decomp_set0
,decomp_set0
- definition
measure
- lemma
Rmu_fin_bigcup
,RmuE
,Rmu0
,Rmu_ge0
,Rmu_additive
,Rmu_additive_measure
- canonical
measure_additive_measure
- lemmas
- lemmas
covered_byP
,covered_by_finite
,covered_by_countable
,measure_le0
,content_sub_additive
,content_sub_fsum
,content_ring_sup_sigma_additive
,content_ring_sigma_additive
,ring_sigma_sub_additive
,ring_sigma_additive
,measure_sigma_sub_additive
,measureIl
,measureIr
,subset_measure0
,measureUfinr
,measureUfinl
,eq_measureU
,null_set_setU
- lemmas
g_salgebra_measure_unique_trace
,g_salgebra_measure_unique_cover
,g_salgebra_measure_unique
,measure_unique
,measurable_mu_extE
,Rmu_ext
,measurable_Rmu_extE
,sub_caratheodory
- definition
Hahn_ext
, canonicalHahn_ext_measure
, lemmaHahn_ext_sigma_finite
,Hahn_ext_unique
,caratheodory_measurable_mu_ext
- definitions
preimage_classes
,prod_measurable
,prod_measurableType
- lemmas
preimage_classes_comp
,measurableM
,measurable_prod_measurableType
,measurable_prod_g_measurableTypeR
,measurable_prod_g_measurableType
,prod_measurable_funP
,measurable_fun_prod1
,measurable_fun_prod2
- definitions
- in
functions.v
:- definitions
set_fun
,set_inj
- mixin
isFun
, structureFun
, notations{fun ... >-> ...}
,[fun of ...]
- field
funS
declared as a hint
- field
- mixin
OInv
, structureOInversible
, notations{oinv ... >-> ...}
,[oinv of ...]
,'oinv_ ...
- structure
OInvFun
, notations{oinvfun ... >-> ...}
,[oinvfun of ...]
- mixin
OInv_Inv
, factoryInv
, structureInversible
, notations{inv ... >-> ...}
,[inv of ...]
, notation^-1
- structure
InvFun
, notations{invfun ... >-> ...}
,[invfun of ...]
- mixin
OInv_CanV
with fieldoinvK
declared as a hint, factoryOCanV
- structure
Surject
, notations{surj ... >-> ...}
,[surj of ...]
- structure
SurjFun
, notations{surjfun ... >-> ...}
,[surjfun of ...]
- structure
SplitSurj
, notations{splitsurj ... >-> ...}
,[splitsurj of ...]
- structure
SplitSurjFun
, notations{splitsurjfun ... >-> ...}
,[splitsurjfun of ...]
- mixin
OInv_Can
with fieldfunoK
declared as a hint, structureInject
, notations{inj ... >-> ...}
,[inj of ...]
- structure
InjFun
, notations{injfun ... >-> ...}
,[injfun of ...]
- structure
SplitInj
, notations{splitinj ... >-> ...}
,[splitinj of ...]
- structure
SplitInjFun
, notations{splitinjfun ... >-> ...}
,[splitinjfun of ...]
- structure
Bij
, notations{bij ... >-> ...}
,[bij of ...]
- structure
SplitBij
, notations{splitbij ... >-> ...}
,[splitbij of ...]
- module
ShortFunSyntax
for shorter notations - notation
'funS_ ...
- definition and hint
fun_image_sub
- definition and hint
mem_fun
- notation
'mem_fun_ ...
- lemma
some_inv
- notation
'oinvS_ ...
- variant
oinv_spec
, lemma and hintoinvP
- notation
'oinvP_ ...
- lemma and hint
oinvT
, notation'oinvT_ ...
- lemma and hint
invK
, notation'invK_ ...
- lemma and hint
invS
, notation'invS_ ...
- notation
'funoK_ ...
- definition
inj
and notation'inj_ ...
- definition and hint
inj_hint
- lemma and hint
funK
, notation'funK_ ...
- lemma
funP
- factories
Inv_Can
,Inv_CanV
- lemmas
oinvV
,surjoinv_inj_subproof
,injoinv_surj_subproof
,invV
,oinv_some
,some_canV_subproof
,some_fun_subproof
,inv_oapp
,oinv_oapp
,inv_oappV
,oapp_can_subproof
,oapp_surj_subproof
,oapp_fun_subproof
,inv_obind
,oinv_obind
,inv_obindV
,oinv_comp
,some_comp_inv
,inv_comp
,comp_can_subproof
,comp_surj_subproof
, - notation
'totalfun_ ...
- lemmas
oinv_olift
,inv_omap
,oinv_omap
,omapV
- factories
canV
,OInv_Can2
,OCan2
,Can
,Inv_Can2
,Can2
,SplitInjFun_CanV
,BijTT
- lemmas
surjective_oinvK
,surjective_oinvS
, coercionsurjective_ocanV
- definition and coercion
surjection_of_surj
, lemmaPsurj
, coercionsurjection_of_surj
- lemma
oinv_surj
, lemma and hintsurj
, notation'surj_
- definition
funin
, lemmaset_fun_image
, notation[fun ... in ...]
- definition
split_
, lemmassplitV
,splitis_inj_subproof
,splitid
,splitsurj_subproof
, notation'split_
,split
- factories
Inj
,SurjFun_Inj
,SplitSurjFun_Inj
- lemmas
Pinj
,Pfun
,injPfun
,funPinj
,funPsurj
,surjPfun
,Psplitinj
,funPsplitinj
,PsplitinjT
,funPsplitsurj
,PsplitsurjT
- definition
unbind
- lemmas
unbind_fun_subproof
,oinv_unbind
,inv_unbind_subproof
,inv_unbind
,unbind_inj_subproof
,unbind_surj_subproof
,odflt_unbind
,oinv_val
,val_bij_subproof
,inv_insubd
- definition
to_setT
, lemmainv_to_setT
- definition
subfun
, lemmasubfun_inj
- lemma
subsetW
, definitionsubsetCW
- lemmas
subfun_imageT
,subfun_inv_subproof
- definition
seteqfun
, lemmaseteqfun_can2_subproof
- definitions
incl
,eqincl
, lemmaeqincl_surj
, notationinclT
- definitions
mkfun
,mkfun_fun
- definition
set_val
, lemmasoinv_set_val
,set_valE
- definition
ssquash
- lemma
set0fun_inj
- definitions
finset_val
,val_finset
- lemmas
finset_valK
,val_finsetK
- definition
glue
,glue1
,glue2
, lemmasglue_fun_subproof
,oinv_glue
,some_inv_glue_subproof
,inv_glue
,glueo_can_subproof
,glue_canv_subproof
- lemmas
inv_addr
,addr_can2_subproof
- lemmas
empty_can_subproof
,empty_fun_subproof
,empty_canv_subproof
- lemmas
subl_surj
,subr_surj
,surj_epi
,epiP
,image_eq
,oinv_image_sub
,oinv_Iimage_sub
,oinv_sub_image
,inv_image_sub
,inv_Iimage_sub
,inv_sub_image
,reindex_bigcup
,reindex_bigcap
,bigcap_bigcup
,trivIset_inj
,set_bij_homo
- definition and hint
fun_set_bij
- coercion
set_bij_bijfun
- definition and coercion
bij_of_set_bijection
- lemma and hint
bij
, notation'bij_
- definition
bijection_of_bijective
, lemmasPbijTT
,setTT_bijective
, lemma and hintbijTT
, notation'bijTT_
- lemmas
patchT
,patchN
,patchC
,patch_inj_subproof
,preimage_restrict
,comp_patch
,patch_setI
,patch_set0
,patch_setT
,restrict_comp
- definitions
sigL
,sigLfun
,valL_
,valLfun_
- lemmas
sigL_isfun
,valL_isfun
,sigLE
,eq_sigLP
,eq_sigLfunP
,sigLK
,valLK
,valLfunK
,sigL_valL
,sigL_valLfun\
,sigL_restrict
,image_sigL
,eq_restrictP
- notations
'valL_ ...
,'valLfun_ ...
,valL
- definitions
sigR
,valLr
,valLr_fun
- lemmas
sigRK
,sigR_funK
,valLrP
,valLrK
- lemmas
oinv_sigL
,sigL_inj_subproof
,sigL_surj_subproof
,oinv_sigR
,sigR_inj_subproof
,sigR_surj_subproof
,sigR_some_inv
,inv_sigR
,sigL_some_inv
,inv_sigL
,oinv_valL
,oapp_comp_x
,valL_inj_subproof
,valL_surj_subproof
,valL_some_inv
,inv_valL
,sigL_injP
,sigL_surjP
,sigL_funP
,sigL_bijP
,valL_injP
,valL_surjP
,valLfunP
,valL_bijP
- lemmas
oinv_valLr
,valLr_inj_subproof
,valLr_surj_subproof
- definitions
sigLR
,valLR
,valLRfun
, lemmasvalLRE
,valLRfunE
,sigL2K
,valLRK
,valLRfun_inj
,sigLR_injP
,valLR_injP
,sigLR_surjP
,valLR_surjP
,sigLR_bijP
,sigLRfun_bijP
,valLR_bijP
,subsetP
- new lemmas
eq_set_bijLR
,eq_set_bij
,bij_omap
,bij_olift
,bij_sub_sym
,splitbij_sub_sym
,set_bij00
,bij_subl
,bij_sub
,splitbij_sub
,can2_bij
,bij_sub_setUrl
,bij_sub_setUrr
,bij_sub_setUrr
,bij_sub_setUlr
- definition
pinv_
, lemmasinjpinv_surj
,injpinv_image
,injpinv_bij
,surjpK
,surjpinv_image_sub
,surjpinv_inj
,surjpinv_bij
,bijpinv_bij
,pPbij_
,pPinj_
,injpPfun_
,funpPinj_
- definitions
- in
fsbigop.v
:- notations
\big[op/idx]_(i \in A) f i
,\sum_(i \in A) f i
- lemma
finite_index_key
- definition
finite_support
- lemmas
in_finite_support
,no_finite_support
,eq_finite_support
- variant
finite_support_spec
- lemmas
finite_supportP
,eq_fsbigl
,eq_fsbigr
,fsbigTE
,fsbig_mkcond
,fsbig_mkcondr
,fsbig_mkcondl
,bigfs
,fsbigE
,fsbig_seq
,fsbig1
,fsbig_dflt
,fsbig_widen
,fsbig_supp
,fsbig_fwiden
,fsbig_set0
,fsbig_set1
,full_fsbigID
,fsbigID
,fsbigU
,fsbigU0
,fsbigD1
,full_fsbig_distrr
,fsbig_distrr
,mulr_fsumr
,mulr_fsuml
,fsbig_ord
,fsbig_finite
,reindex_fsbig
,fsbig_image
,reindex_inside
,reindex_fsbigT
, notationreindex_inside_setT
- lemmas
ge0_mule_fsumr
,ge0_mule_fsuml
,fsbigN1
,fsume_ge0
,fsume_le0
,fsume_gt0
,fsume_lt0
,pfsume_eq0
,fsbig_setU
,pair_fsum
,exchange_fsum
,fsbig_split
- notations
- in
set_interval.v
:- definition
neitv
- lemmas
neitv_lt_bnd
,set_itvP
,subset_itvP
,set_itvoo
,set_itvco
,set_itvcc
,set_itvoc
,set_itv1
,set_itvoo0
,set_itvoc0
,set_itvco0
,set_itv_infty_infty
,set_itv_o_infty
,set_itv_c_infty
,set_itv_infty_o
,set_itv_infty_c
,set_itv_pinfty_bnd
,set_itv_bnd_ninfty
- multirules
set_itv_infty_set0
,set_itvE
- lemmas
setUitv1
,setU1itv
- lemmas
neitvE
,neitvP
,setitv0
- lemmas
set_itvI
- lemmas and hints
has_lbound_itv
,has_ubound_itv
,hasNlbound_itv
,hasNubound_itv
,has_sup_half
,has_inf_half
- lemmas
opp_itv_bnd_infty
,opp_itvoo
,sup_itv
,inf_itv
,sup_itvcc
,inf_itvcc
setCitvl
,setCitvr
,setCitv
- lemmas
set_itv_splitD
,set_itvK
,RhullT
,RhullK
,itv_c_inftyEbigcap
,itv_bnd_inftyEbigcup
,itv_o_inftyEbigcup
,set_itv_setT
,set_itv_ge
- definitions
conv
,factor
- lemmas
conv_id
,convEl
,convEr
,conv10
,conv0
,conv1
,conv_sym
,conv_flat
,factorl
,factorr
,factor_flat
,mem_1B_itvcc
,factorK
,convK
,conv_inj
,conv_bij
,factor_bij
,leW_conv
,leW_factor
,le_conv
,le_factor
,lt_conv
,lt_factor
- definition
ndconv
- lemmas
ndconvE
,conv_itv_bij
,conv_itv_bij
,factor_itv_bij
,mem_conv_itv
,mem_factor_itv
,mem_conv_itvcc
,range_conv
,range_factor
,Rhull_smallest
,le_Rhull
,neitv_Rhull
,Rhull_involutive
- coercion
ereal_of_itv_bound
- lemmas
le_bnd_ereal
,lt_ereal_bnd
,neitv_bnd1
,neitv_bnd2
,Interval_ereal_mem
,ereal_mem_Interval
,trivIset_set_itv_nth
- definition
disjoint_itv
- lemmas
disjoint_itvxx
,lt_disjoint
,disjoint_neitv
,disj_itv_Rhull
- definition
- new file
numfun.v
- lemmas
restrict_set0
,restrict_ge0
,erestrict_set0
,erestrict_ge0
,ler_restrict
,lee_restrict
- definition
funenng
and notation^\+
, definitionfunennp
and notation^\-
- lemmas and hints
funenng_ge0
,funennp_ge0
- lemmas
funenngN
,funennpN
,funenng_restrict
,funennp_restrict
,ge0_funenngE
,ge0_funennpE
,le0_funenngE
,le0_funennpE
,gt0_funenngM
,gt0_funennpM
,lt0_funenngM
,lt0_funennpM
,fune_abse
,funenngnnp
,add_def_funennpg
,funeD_Dnng
,funeD_nngD
- definition
indic
and notation\1_
- lemmas
indicE
,indicT
,indic0
,indic_restrict
,restrict_indic
,preimage_indic
,image_indic
,image_indic_sub
- lemmas
- in
trigo.v
:- lemmas
acos1
,acos0
,acosN1
,acosN
,cosKN
,atan0
,atan1
- lemmas
- new file
lebesgue_measure.v
- new file
lebesgue_integral.v
- in
boolp.v
:equality_mixin_of_Type
,choice_of_Type
-> seeclassicalType
- in
topology.v
:- generalize
connected_continuous_connected
,continuous_compact
- arguments of
subspace
- definition
connected_component
- generalize
- in
sequences.v
:\sum
notations for extended real numbers now inereal_scope
- lemma
ereal_cvg_sub0
is now an equivalence
- in
derive.v
:- generalize
EVT_max
,EVT_min
,Rolle
,MVT
,ler0_derive1_nincr
,le0r_derive1_ndecr
with subspace topology - implicits of
cvg_at_rightE
,cvg_at_leftE
- generalize
- in
trigo.v
:- the
realType
argument ofpi
is implicit - the printed type of
acos
,asin
,atan
isR -> R
- the
- in
esum.v
(wascsum.v
):- lemma
esum_ge0
has now a weaker hypothesis
- lemma
- notation
`I_
moved fromcardinality.v
toclassical_sets.v
- moved from
classical_types.v
toboolp.v
:- definitions
gen_eq
andgen_eqMixin
, lemmagen_eqP
- canonicals
arrow_eqType
,arrow_choiceType
- definitions
dep_arrow_eqType
,dep_arrow_choiceClass
,dep_arrow_choiceType
- canonicals
Prop_eqType
,Prop_choiceType
- definitions
- in
classical_sets.v
:- arguments of
preimage
[set of f]
becomesrange f
(the old notation is still available but is displayed as the new one, and will be removed in future versions)
- arguments of
- in
cardinality.v
:- definition
card_eq
now uses{bij ... >-> ...}
- definition
card_le
now uses{injfun ... >-> ...}
- definition
set_finite
changed tofinite_set
- definition
card_leP
now usesreflect
- definition
card_le0P
now usesreflect
- definition
card_eqP
now usesreflect
- statement of theorem
Cantor_Bernstein
- lemma
subset_card_le
does not require finiteness of rhs anymore - lemma
surjective_card_le
does not require finiteness of rhs anymore and renamed tosurj_card_ge
- lemma
card_le_diff
does not require finiteness of rhs anymore and renamed tocard_le_setD
- lemma
card_eq_sym
now an equality - lemma
card_eq0
now an equality - lemmas
card_le_II
andcard_eq_II
now equalities - lemma
countable_injective
renamed tocountable_injP
and usereflect
- lemmas
II0
,II1
,IIn_eq0
moved toclassical_sets.v
- lemma
II_recr
renamed toIIS
and moved toclassical_sets.v
- definition
surjective
moved tofunctions.v
and renamedset_surj
- definition
set_bijective
moved tofunctions.v
and changed toset_bij
- lemma
surjective_id
moved tofunctions.v
and renamedsurj_id
- lemma
surjective_set0
moved tofunctions.v
and renamedsurj_set0
- lemma
surjectiveE
moved tofunctions.v
and renamedsurjE
- lemma
surj_image_eq
moved tofunctions.v
- lemma
can_surjective
moved tofunctions.v
and changed tocan_surj
- lemma
surjective_comp
moved tofunctions.v
and renamedsurj_comp
- lemma
set_bijective1
moved tofunctions.v
and renamedeq_set_bijRL
- lemma
set_bijective_image
moved tofunctions.v
and renamedinj_bij
- lemma
set_bijective_subset
moved tofunctions.v
and changed tobij_subr
- lemma
set_bijective_comp
moved tofunctions.v
and renamedset_bij_comp
- definition
inverse
changed topinv_
, seefunctions.v
- lemma
inj_of_bij
moved tofunctions.v
and renamed toset_bij_inj
- lemma
sur_of_bij
moved tofunctions.v
and renamed toset_bij_surj
- lemma
sub_of_bij
moved tofunctions.v
and renamed toset_bij_sub
- lemma
set_bijective_D1
moved tofunctions.v
and renamed tobij_II_D1
- lemma
injective_left_inverse
moved tofunctions.v
and changed topinvKV
- lemma
injective_right_inverse
moved tofunctions.v
and changed topinvK
- lemmas
image_nat_maximum
,fset_nat_maximum
moved tomathcomp_extra.v
- lemmas
enum0
,enum_recr
moved tomathcomp_extra.v
and renamed toenum_ord0
,enum_ordS
- lemma
in_inj_comp
moved tomathcomp_extra.v
- definition
- from
cardinality.v
toclassical_sets.v
:eq_set0_nil
->set_seq_eq0
eq_set0_fset0
->set_fset_eq0
- in
measure.v
:- definition
bigcup2
, lemmabigcup2E
moved toclassical_sets.v
- mixin
isSemiRingOfSets
andisRingOfSets
changed - types
semiRingOfSetsType
,ringOfSetsType
,algebraOfSetsType
,measurableType
now pointed types - definition
measurable_fun
changed - definition
sigma_sub_additive
changed and renamed tosigma_subadditive
- record
AdditiveMeasure.axioms
- lemmas
measure_ge0
- record
Measure.axioms
- definitions
seqDU
,seqD
, lemma and hinttrivIset_seqDU
, lemmasbigsetU_seqDU
,seqDU_bigcup_eq
,seqDUE
,trivIset_seqD
,bigsetU_seqD
,setU_seqD
,eq_bigsetU_seqD
,eq_bigcup_seqD
,eq_bigcup_seqD_bigsetU
moved tosequences.v
- definition
negligibleP
weakened to additive measures - lemma
measure_negligible
- definition
caratheodory_measurable
andcaratheodory_type
weakened from outer measures to functions - lemma
caratheodory_measure_ge0
does take a condition anymore - definitions
measurable_cover
andmu_ext
, canonicalouter_measure_of_measure
weakened tosemiRingOfSetsType
- definition
- in
ereal.v
:- lemmas
abse_ge0
,gee0_abs
,gte0_abs
,lee0_abs
,lte0_abs
,mulN1e
,muleN1
are generalized fromrealDomainType
tonumDomainType
- lemmas
- moved from
normedtype.v
tomathcomp_extra.v
:- lemmas
ler_addgt0Pr
,ler_addgt0Pl
,in_segment_addgt0Pr
,in_segment_addgt0Pl
,
- lemmas
- moved from
posnum.v
tomathcomp_extra.v
:- lemma
splitr
- lemma
- moved from
measure.v
tosequences.v
- lemma
cvg_geometric_series_half
- lemmas
realDe
,realDed
,realMe
,nadde_eq0
,padde_eq0
,adde_ss_eq0
,ndadde_eq0
,pdadde_eq0
,dadde_ss_eq0
,mulrpinfty_real
,mulpinftyr_real
,mulrninfty_real
,mulninftyr_real
,mulrinfty_real
- lemma
- moved from
topology.v
tofunctions.v
- section
function_space
(defintioncst
, definitionfct_zmodMixin
, canonicalfct_zmodType
, definitionfct_ringMixin
, canonicalfct_ringType
, canonicalfct_comRingType
, definitionfct_lmodMixin
, canonicalfct_lmodType
, lemmafct_lmodType
) - lemmas
addrfunE
,opprfunE
,mulrfunE
,scalrfunE
,cstE
,exprfunE
,compE
- definition
fctE
- section
- moved from
classical_sets.v
tofunctions.v
- definition
patch
, notationrestrict
andf \_ D
- definition
- in
topology.v
:closedC
->open_closedC
openC
->closed_openC
cvg_restrict_dep
->cvg_sigL
- in
classical_sets.v
:mkset_nil
->set_nil
- in
cardinality.v
:card_le0x
->card_ge0
card_eq_sym
->card_esym
set_finiteP
->finite_setP
set_finite0
->finite_set0
set_finite_seq
->finite_seq
set_finite_countable
->finite_set_countable
subset_set_finite
->sub_finite_set
set_finite_preimage
->finite_preimage
set_finite_diff
->finite_setD
countably_infinite_prod_nat
->card_nat2
- file
csum.v
renamed toesum.v
with the following renamings:\csum
->\esum
csum
->esum
csum0
->esum_set0
csum_ge0
->esum_ge0
csum_fset
->esum_fset
csum_image
->esum_image
csum_bigcup
->esum_bigcup
- in
ereal.v
:lte_subl_addl
->lte_subel_addl
lte_subr_addr
->lte_suber_addr
lte_dsubl_addl
->lte_dsubel_addl
lte_dsubr_addr
->lte_dsuber_addr
- in
ereal.v
:- lemmas
esum_fset_ninfty
,esum_fset_pinfty
- lemmas
desum_fset_pinfty
,desum_fset_ninfty
- lemmas
big_nat_widenl
,big_geq_mkord
- lemmas
- in
csum.v
:- lemmas
fsets_img
,fsets_ord
,fsets_ord_nat
,fsets_ord_subset
,csum_bigcup_le
,le_csum_bigcup
- lemmas
- in
classical_sets.v
:- lemma
subsetU
- definition
restrict_dep
,extend_up
, lemmarestrict_depE
- lemma
- in
cardinality.v
:- lemma
surjective_image
,surjective_image_eq0
- lemma
surjective_right_inverse
, - lemmas
card_le_surj
,card_eq00
- lemmas
card_eqTT
,card_eq_II
,card_eq_le
,card_leP
- lemmas
set_bijective_inverse
,countable_trans
,set_bijective_U1
,set_bijective_cyclic_shift
,set_bijective_cyclic_shift_simple
,set_finite_bijective
,subset_set_finite_card_le
,injective_set_finite_card_le
,injective_set_finite
,injective_card_le
,surjective_set_finite_card_le
,set_finite_inter_set0_union
,ex_in_D
. - definitions
min_of_D
,min_of_D_seq
,infsub_enum
- lemmas
min_of_D_seqE
,increasing_infsub_enum
,sorted_infsub_enum
,injective_infsub_enum
,subset_infsub_enum
,infinite_nat_subset_countable
- definition
enumeration
- lemmas
enumeration_id
,enumeration_set0
,ex_enum_notin
- defnitions
min_of_e
,min_of_e_seq
,smallest_of_e
,enum_wo_rep
- lemmas
enum_wo_repE
,min_of_e_seqE
,smallest_of_e_notin_enum_wo_rep
,injective_enum_wo_rep
,surjective_enum_wo_rep
,set_bijective_enum_wo_rep
,enumeration_enum_wo_rep
,countable_enumeration
- definition
nat_of_pair
- lemmas
nat_of_pair_inj
,countable_prod_nat
- lemma
- in
measure.v
:- definition
diff_fsets
- lemmas
semiRingOfSets_measurableI
,semiRingOfSets_measurableD
,semiRingOfSets_diff_fsetsE
,semiRingOfSets_diff_fsets_disjoint
- definition
uncurry
- definition
- in
sequences.v
:- lemmas
leq_fact
,prod_rev
,fact_split
(now in MathComp)
- lemmas
- in
boolp.v
- module BoolQuant with notations
`[forall x P]
and`[exists x P]
(subsumed by`[< >]
) - definition
xchooseb
- lemmas
existsPP
,forallPP
,existsbP
,forallbP
,forallbE
,existsp_asboolP
,forallp_asboolP
,xchoosebP
,imsetbP
- module BoolQuant with notations
- in
normedtype.v
:- lemmas
nbhs_pinfty_gt_pos
,nbhs_pinfty_ge_pos
,nbhs_ninfty_lt_pos
,nbhs_ninfty_le_pos
- lemmas
- in
topology.v
:- definitions
kolmogorov_space
,accessible_space
- lemmas
accessible_closed_set1
,accessible_kolmogorov
- lemma
filter_pair_set
- definition
prod_topo_apply
- lemmas
prod_topo_applyE
,prod_topo_apply_continuous
,hausdorff_product
- definitions
- in
ereal.v
:- lemmas
lee_pemull
,lee_nemul
,lee_pemulr
,lee_nemulr
- lemma
fin_numM
- definition
mule_def
, notationx *? y
- lemma
mule_defC
- notations
\*
inereal_scope
, andereal_dual_scope
- lemmas
mule_def_fin
,mule_def_neq0_infty
,mule_def_infty_neq0
,neq0_mule_def
- notation
\-
inereal_scope
andereal_dual_scope
- lemma
fin_numB
- lemmas
mule_eq_pinfty
,mule_eq_ninfty
- lemmas
fine_eq0
,abse_eq0
- lemmas
- in
sequences.v
:- lemmas
ereal_cvgM_gt0_pinfty
,ereal_cvgM_lt0_pinfty
,ereal_cvgM_gt0_ninfty
,ereal_cvgM_lt0_ninfty
,ereal_cvgM
- lemmas
- in
topology.v
:- renamed and generalized
setC_subset_set1C
implication to equivalencesubsetC1
- renamed and generalized
- in
ereal.v
:- lemmas
ereal_sup_gt
,ereal_inf_lt
now useexists2
- lemmas
- notation
\*
moved fromrealseq.v
totopology.v
- in `topology.v:
hausdorff
->hausdorff_space
- in
realseq.v
:- notation
\-
- notation
- add
.dir-locals.el
for company-coq symbols
- in
boolp.v
:- lemmas
not_True
,not_False
- lemmas
- in
classical_sets.v
:- lemma
setDIr
- lemmas
setMT
,setTM
,setMI
- lemmas
setSM
,setM_bigcupr
,setM_bigcupl
- lemmas
cover_restr
,eqcover_r
- lemma
notin_set
- lemma
- in
reals.v
:- lemma
has_ub_lbN
- lemma
- in
ereal.v
:- lemma
onee_eq0
- lemma
EFinB
- lemmas
mule_eq0
,mule_lt0_lt0
,mule_gt0_lt0
,mule_lt0_gt0
,pmule_rge0
,pmule_lge0
,nmule_lge0
,nmule_rge0
,pmule_rgt0
,pmule_lgt0
,nmule_lgt0
,nmule_rgt0
- lemmas
muleBr
,muleBl
- lemma
eqe_absl
- lemma
lee_pmul
- lemmas
fin_numElt
,fin_numPlt
- lemma
- in
topology.v
- lemmas
cstE
,compE
,opprfunE
,addrfunE
,mulrfunE
,scalrfunE
,exprfunE
- multi-rule
fctE
- lemmas
within_interior
,within_subset,
withinE
,fmap_within_eq
- definitions
subspace
,incl_subspace
. - canonical instances of
pointedType
,filterType
,topologicalType
,uniformType
andpseudoMetricType
onsubspace
. - lemmas
nbhs_subspaceP
,nbhs_subspace_in
,nbhs_subspace_out
,subspace_cvgP
,subspace_continuousP
,subspace_eq_continuous
,nbhs_subspace_interior
,nbhs_subspace_ex
,incl_subspace_continuous
,open_subspace1out
,open_subspace_out
,open_subspaceT
,open_subspaceIT
,open_subspaceTI
,closed_subspaceT
,open_subspaceP
,open_subspaceW
,subspace_hausdorff
, andcompact_subspaceIP
.
- lemmas
- in
normedtype.v
- lemmas
continuous_shift
,continuous_withinNshiftx
- lemmas
bounded_fun_has_ubound
,bounded_funN
,bounded_fun_has_lbound
,bounded_funD
- lemmas
- in
derive.v
- lemmas
derive1_comp
,derivable_cst
,derivable_id
, trigger_derive` - instances
is_derive_id
,is_derive_Nid
- lemmas
- in
sequences.v
:- lemmas
cvg_series_bounded
,cvg_to_0_linear
,lim_cvg_to_0_linear
. - lemma
cvg_sub0
- lemma
cvg_zero
- lemmas
ereal_cvg_abs0
,ereal_cvg_sub0
,ereal_squeeze
- lemma
ereal_is_cvgD
- lemmas
- in
measure.v
:- hints for
measurable0
andmeasurableT
- hints for
- file
realfun.v
:- lemma
is_derive1_caratheodory
,is_derive_0_is_cst
- instance
is_derive1_comp
- lemmas
is_deriveV
,is_derive_inverse
- lemma
- new file
nsatz_realType
- new file
exp.v
- lemma
normr_nneg
(hint) - definitions
pseries
,pseries_diffs
- facts
is_cvg_pseries_inside_norm
,is_cvg_pseries_inside
- lemmas
pseries_diffsN
,pseries_diffs_inv_fact
,pseries_diffs_sumE
,pseries_diffs_equiv
,is_cvg_pseries_diffs_equiv
,pseries_snd_diffs
- lemmas
expR0
,expR_ge1Dx
,exp_coeffE
,expRE
- instance
is_derive_expR
- lemmas
derivable_expR
,continuous_expR
,expRxDyMexpx
,expRxMexpNx_1
- lemmas
pexpR_gt1
,expR_gt0
,expRN
,expRD
,expRMm
- lemmas
expR_gt1
,expR_lt1
,expRB
,ltr_expR
,ler_expR
,expR_inj
,expR_total_gt1
,expR_total
- definition
ln
- fact
ln0
- lemmas
expK
,lnK
,ln1
,lnM
,ln_inj
,lnV
,ln_div
,ltr_ln
,ler_ln
,lnX
- lemmas
le_ln1Dx
,ln_sublinear
,ln_ge0
,ln_gt0
- lemma
continuous_ln
- instance
is_derive1_ln
- definition
exp_fun
, notation`^
- lemmas
exp_fun_gt0
,exp_funr1
,exp_funr0
,exp_fun1
,ler_exp_fun
,exp_funD
,exp_fun_inv
,exp_fun_mulrn
- definition
riemannR
, lemmasriemannR_gt0
,dvg_riemannR
- lemma
- new file
trigo.v
- lemmas
sqrtvR
,eqr_div
,big_nat_mul
,cvg_series_cvg_series_group
,lt_sum_lim_series
- definitions
periodic
,alternating
- lemmas
periodicn
,alternatingn
- definition
sin_coeff
- lemmas
sin_coeffE
,sin_coeff_even
,is_cvg_series_sin_coeff
- definition
sin
- lemmas
sinE
- definition
sin_coeff'
- lemmas
sin_coeff'E
,cvg_sin_coeff'
,diffs_sin
,series_sin_coeff0
,sin0
- definition
cos_coeff
- lemmas
cos_ceff_2_0
,cos_coeff_2_2
,cos_coeff_2_4
,cos_coeffE
,is_cvg_series_cos_coeff
- definition
cos
- lemma
cosE
- definition
cos_coeff'
- lemmas
cos_coeff'E
,cvg_cos_coeff'
,diffs_cos
,series_cos_coeff0
,cos0
- instance
is_derive_sin
- lemmas
derivable_sin
,continuous_sin
,is_derive_cos
,derivable_cos
,continuous_cos
- lemmas
cos2Dsin2
,cos_max
,cos_geN1
,cos_le1
,sin_max
,sin_geN1
,sin_le1
- fact
sinD_cosD
- lemmas
sinD
,cosD
- lemmas
sin2cos2
,cos2sin2
,sin_mulr2n
,cos_mulr2n
- fact
sinN_cosN
- lemmas
sinN
,cosN
- lemmas
sin_sg
,cos_sg
,cosB
,sinB
- lemmas
norm_cos_eq1
,norm_sin_eq1
,cos1sin0
,sin0cos1
,cos_norm
- definition
pi
- lemmas
pihalfE
,cos2_lt0
,cos_exists
- lemmas
sin2_gt0
,cos_pihalf_uniq
,pihalf_02_cos_pihalf
,pihalf_02
,pi_gt0
,pi_ge0
- lemmas
sin_gt0_pihalf
,cos_gt0_pihalf
,cos_pihalf
,sin_pihalf
,cos_ge0_pihalf
,cospi
,sinpi
- lemmas
cos2pi
,sin2pi
,sinDpi
,cosDpi
,sinD2pi
,cosD2pi
- lemmas
cosDpihalf
,cosBpihalf
,sinDpihalf
,sinBpihalf
,sin_ge0_pi
- lemmas
ltr_cos
,ltr_sin
,cos_inj
,sin_inj
- definition
tan
- lemmas
tan0
,tanpi
,tanN
,tanD
,tan_mulr2n
,cos2_tan2
- lemmas
tan_pihalf
,tan_piquarter
,tanDpi
,continuous_tan
- lemmas
is_derive_tan
,derivable_tan
,ltr_tan
,tan_inj
- definition
acos
- lemmas
acos_def
,acos_ge0
,acos_lepi
,acosK
,acos_gt0
,acos_ltpi
- lemmas
cosK
,sin_acos
,continuous_acos
,is_derive1_acos
- definition
asin
- lemmas
asin_def
,asin_geNpi2
,asin_lepi2
,asinK
,asin_ltpi2
,asin_gtNpi2
- lemmas
sinK
,cos_asin
,continuous_asin
,is_derive1_asin
- definition
atan
- lemmas
atan_def
,atan_gtNpi2
,atan_ltpi2
,atanK
,tanK
- lemmas
continuous_atan
,cos_atan
- instance
is_derive1_atan
- lemmas
- in
normedtype.v
:nbhs_minfty_lt
renamed tonbhs_ninfty_lt_pos
and changed to not use{posnum R}
nbhs_minfty_le
renamed tonbhs_ninfty_le_pos
and changed to not use{posnum R}
- in
sequences.v
:- lemma
is_cvg_ereal_nneg_natsum
: remove superfluousP
parameter - statements of lemmas
nondecreasing_cvg
,nondecreasing_is_cvg
,nonincreasing_cvg
,nonincreasing_is_cvg
usehas_{l,u}bound
predicates instead of requiring an additional variable - statement of lemma
S1_sup
useubound
instead of requiring an additional variable
- lemma
- in
normedtype.v
:nbhs_minfty_lt_real
->nbhs_ninfty_lt
nbhs_minfty_le_real
->nbhs_ninfty_le
- in
sequences.v
:cvgNminfty
->cvgNninfty
cvgPminfty
->cvgPninfty
ler_cvg_minfty
->ler_cvg_ninfty
nondecreasing_seq_ereal_cvg
->ereal_nondecreasing_cvg
- in
normedtype.v
:nbhs_pinfty_gt
->nbhs_pinfty_gt_pos
nbhs_pinfty_ge
->nbhs_pinfty_ge_pos
nbhs_pinfty_gt_real
->nbhs_pinfty_gt
nbhs_pinfty_ge_real
->nbhs_pinfty_ge
- in
measure.v
:measure_bigcup
->measure_bigsetU
- in
ereal.v
:mulrEDr
->muleDr
mulrEDl
->muleDl
dmulrEDr
->dmuleDr
dmulrEDl
->dmuleDl
NEFin
->EFinN
addEFin
->EFinD
mulEFun
->EFinM
daddEFin
->dEFinD
dsubEFin
->dEFinB
- in
ereal.v
:- lemma
subEFin
- lemma
- in
Makefile.common
- add
doc
anddoc-clean
targets
- add
- in
boolp.v
:- lemmas
orA
,andA
- lemmas
- in
classical_sets.v
- lemma
setC_inj
, - lemma
setD1K
, - lemma
subTset
, - lemma
setUidPr
,setUidl
andsetUidr
, - lemma
setIidPr
,setIidl
andsetIidr
, - lemma
set_fset0
,set_fset1
,set_fsetI
,set_fsetU
, - lemma
bigcap_inf
,subset_bigcup_r
,subset_bigcap_r
,eq_bigcupl
,eq_bigcapl
,eq_bigcup
,eq_bigcap
,bigcupU
,bigcapI
,bigcup_const
,bigcap_const
,bigcapIr
,bigcupUr
,bigcap_set0
,bigcap_set1
,bigcap0
,bigcapT
,bigcupT
,bigcapTP
,setI_bigcupl
,setU_bigcapl
,bigcup_mkcond
,bigcap_mkcond
,setC_bigsetU
,setC_bigsetI
,bigcap_set_cond
,bigcap_set
,bigcap_split
,bigcap_mkord
,subset_bigsetI
,subset_bigsetI_cond
,bigcap_image
- lemmas
bigcup_setU1
,bigcap_setU1
,bigcup_setU
,bigcap_setU
,bigcup_fset
,bigcap_fset
,bigcup_fsetU1
,bigcap_fsetU1
,bigcup_fsetD1
,bigcap_fsetD1
, - definition
mem_set : A u -> u \in A
- lemmas
in_setP
andin_set2P
- lemma
forall_sig
- definition
patch
, notationrestrict
andf \_ D
, definitionsrestrict_dep
andextend_dep
, with lemmasrestrict_depE
,fun_eq_inP
,extend_restrict_dep
,extend_depK
,restrict_extend_dep
,restrict_dep_restrict
,restrict_dep_setT
- lemmas
setUS
,setSU
,setUSS
,setUCA
,setUAC
,setUACA
,setUUl
,setUUr
- lemmas
bigcup_image
,bigcup_of_set1
,set_fset0
,set_fset1
,set_fsetI
,set_fsetU
,set_fsetU1
,set_fsetD
,set_fsetD1
, - notation
[set` i]
- notations
set_itv
,`[a, b]
,`]a, b]
,`[a, b[
,`]a, b[
,`]-oo, b]
,`]-oo, b[
,`[a, +oo]
,`]a, +oo]
,`]-oo, +oo[
- lemmas
setDDl
,setDDr
- lemma
- in
topology.v
:- lemma
fmap_comp
- definition
finSubCover
- notations
{uniform` A -> V }
and{uniform U -> V}
and their canonical structures of uniform type. - definition
uniform_fun
to cast into - notations
{uniform A, F --> f }
and{uniform, F --> f}
- lemma
uniform_cvgE
- lemma
uniform_nbhs
- notation
{ptws U -> V}
and its canonical structure of topological type, - definition
ptws_fun
- notation
{ptws F --> f }
- lemma
ptws_cvgE
- lemma
ptws_uniform_cvg
- lemma
cvg_restrict_dep
- lemma
eq_in_close
- lemma
hausdorrf_close_eq_in
- lemma
uniform_subset_nbhs
- lemma
uniform_subset_cvg
- lemma
uniform_restrict_cvg
- lemma
cvg_uniformU
- lemma
cvg_uniform_set0
- notation
{family fam, U -> V}
and its canonical structure of topological type - notation
{family fam, F --> f}
- lemma
fam_cvgP
- lemma
fam_cvgE
- definition
compactly_in
- lemma
family_cvg_subset
- lemma
family_cvg_finite_covers
- lemma
compact_cvg_within_compact
- lemma
le_bigmax
- definition
monotonous
- lemma
and_prop_in
- lemmas
mem_inc_segment
,mem_dec_segment
- lemmas
ltr_distlC
,ler_distlC
- lemmas
subset_ball_prop_in_itv
,subset_ball_prop_in_itvcc
- lemma
dense_rat
- lemma
- in
normedtype.v
:- lemma
is_intervalPlt
- lemma
mule_continuous
- lemmas
ereal_is_cvgN
,ereal_cvgZr
,ereal_is_cvgZr
,ereal_cvgZl
,ereal_is_cvgZl
,ereal_limZr
,ereal_limZl
,ereal_limN
- lemma
bound_itvE
- lemmas
nearN
,near_in_itv
- lemmas
itvxx
,itvxxP
,subset_itv_oo_cc
- lemma
at_right_in_segment
- notations
f @`[a, b]
,g @`]a , b[
- lemmas
mono_mem_image_segment
,mono_mem_image_itvoo
,mono_surj_image_segment
,inc_segment_image
,dec_segment_image
,inc_surj_image_segment
,dec_surj_image_segment
,inc_surj_image_segmentP
,dec_surj_image_segmentP
,mono_surj_image_segmentP
- lemma
- in
reals.v
:- lemmas
floor1
,floor_neq0
- lemma
int_lbound_has_minimum
- lemma
rat_in_itvoo
- lemmas
- in
ereal.v
:- notation
x +? y
foradde_def x y
- lemmas
ge0_adde_def
,onee_neq0
,mule0
,mul0e
- lemmas
mulrEDr
,mulrEDl
,ge0_muleDr
,ge0_muleDl
- lemmas
ge0_sume_distrl
,ge0_sume_distrr
- lemmas
mulEFin
,mule_neq0
,mule_ge0
,muleA
- lemma
muleE
- lemmas
muleN
,mulNe
,muleNN
,gee_pmull
,lee_mul01Pr
- lemmas
lte_pdivr_mull
,lte_pdivr_mulr
,lte_pdivl_mull
,lte_pdivl_mulr
,lte_ndivl_mulr
,lte_ndivl_mull
,lte_ndivr_mull
,lte_ndivr_mulr
- lemmas
lee_pdivr_mull
,lee_pdivr_mulr
,lee_pdivl_mull
,lee_pdivl_mulr
,lee_ndivl_mulr
,lee_ndivl_mull
,lee_ndivr_mull
,lee_ndivr_mulr
- lemmas
mulrpinfty
,mulrninfty
,mulpinftyr
,mulninftyr
,mule_gt0
- definition
mulrinfty
- lemmas
mulN1e
,muleN1
- lemmas
mule_ninfty_pinfty
,mule_pinfty_ninfty
,mule_pinfty_pinfty
- lemmas
mule_le0_ge0
,mule_ge0_le0
,pmule_rle0
,pmule_lle0
,nmule_lle0
,nmule_rle0
- lemma
sube0
- lemmas
adde_le0
,sume_le0
,oppe_ge0
,oppe_le0
,lte_opp
,gee_addl
,gee_addr
,lte_addr
,gte_subl
,gte_subr
,lte_le_sub
,lee_sum_npos_subset
,lee_sum_npos
,lee_sum_npos_ord
,lee_sum_npos_natr
,lee_sum_npos_natl
,lee_sum_npos_subfset
,lee_opp
,le0_muleDl
,le0_muleDr
,le0_sume_distrl
,le0_sume_distrr
,adde_defNN
,minEFin
,mine_ninftyl
,mine_ninftyr
,mine_pinftyl
,mine_pinftyr
,oppe_max
,oppe_min
,mineMr
,mineMl
- definitions
dual_adde
- notations for the above in scope
ereal_dual_scope
delimited bydE
- lemmas
dual_addeE
,dual_sumeE
,dual_addeE_def
,daddEFin
,dsumEFin
,dsubEFin
,dadde0
,dadd0e
,daddeC
,daddeA
,daddeAC
,daddeCA
,daddeACA
,doppeD
,dsube0
,dsub0e
,daddeK
,dfin_numD
,dfineD
,dsubeK
,dsube_eq
,dsubee
,dadde_eq_pinfty
,daddooe
,dadde_Neq_pinfty
,dadde_Neq_ninfty
,desum_fset_pinfty
,desum_pinfty
,desum_fset_ninfty
,desum_ninfty
,dadde_ge0
,dadde_le0
,dsume_ge0
,dsume_le0
,dsube_lt0
,dsubre_le0
,dsuber_le0
,dsube_ge0
,lte_dadd
,lee_daddl
,lee_daddr
,gee_daddl
,gee_daddr
,lte_daddl
,lte_daddr
,gte_dsubl
,gte_dsubr
,lte_dadd2lE
,lee_dadd2l
,lee_dadd2lE
,lee_dadd2r
,lee_dadd
,lte_le_dadd
,lee_dsub
,lte_le_dsub
,lee_dsum
,lee_dsum_nneg_subset
,lee_dsum_npos_subset
,lee_dsum_nneg
,lee_dsum_npos
,lee_dsum_nneg_ord
,lee_dsum_npos_ord
,lee_dsum_nneg_natr
,lee_dsum_npos_natr
,lee_dsum_nneg_natl
,lee_dsum_npos_natl
,lee_dsum_nneg_subfset
,lee_dsum_npos_subfset
,lte_dsubl_addr
,lte_dsubl_addl
,lte_dsubr_addr
,lee_dsubr_addr
,lee_dsubl_addr
,ge0_dsume_distrl
,dmulrEDr
,dmulrEDl
,dge0_mulreDr
,dge0_mulreDl
,dle0_mulreDr
,dle0_mulreDl
,ge0_dsume_distrr
,le0_dsume_distrl
,le0_dsume_distrr
,lee_abs_dadd
,lee_abs_dsum
,lee_abs_dsub
,dadde_minl
,dadde_minr
,lee_dadde
,lte_spdaddr
- lemmas
abse0
,abse_ge0
,lee_abs
,abse_id
,lee_abs_add
,lee_abs_sum
,lee_abs_sub
,gee0_abs
,gte0_abs
,lee_abs
,lte0_abs
,abseM
,lte_absl
,eqe_absl
- notations
maxe
,mine
- lemmas
maxEFin
,adde_maxl
,adde_maxr
,maxe_pinftyl
,maxe_pinftyr
,maxe_ninftyl
,maxe_ninftyr
- lemmas
sub0e
,lee_wpmul2r
,mule_ninfty_ninfty
- lemmas
sube_eq
lte_pmul2r
,lte_pmul2l
,lte_nmul2l
,lte_nmul2r
,mule_le0
,pmule_llt0
,pmule_rlt0
,nmule_llt0
,nmule_rlt0
,mule_lt0
- lemmas
maxeMl
,maxeMr
- lemmas
lte_0_pinfty
,lte_ninfty_0
,lee_0_pinfty
,lee_ninfty_0
,oppe_gt0
,oppe_lt0
- lemma
telescope_sume
- lemmas
lte_add_pinfty
,lte_sum_pinfty
- notation
- in
cardinality.v
:- definition
nat_of_pair
, lemmanat_of_pair_inj
- lemmas
surjectiveE
,surj_image_eq
,can_surjective
- definition
- in
sequences.v
:- lemmas
lt_lim
,nondecreasing_dvg_lt
,ereal_lim_sum
- lemmas
ereal_nondecreasing_opp
,ereal_nondecreasing_is_cvg
,ereal_nonincreasing_cvg
,ereal_nonincreasing_is_cvg
- lemmas
- file
realfun.v
:- lemmas
itv_continuous_inj_le
,itv_continuous_inj_ge
,itv_continuous_inj_mono
- lemmas
segment_continuous_inj_le
,segment_continuous_inj_ge
,segment_can_le
,segment_can_ge
,segment_can_mono
- lemmas
segment_continuous_surjective
,segment_continuous_le_surjective
,segment_continuous_ge_surjective
- lemmas
continuous_inj_image_segment
,continuous_inj_image_segmentP
,segment_continuous_can_sym
,segment_continuous_le_can_sym
,segment_continuous_ge_can_sym
,segment_inc_surj_continuous
,segment_dec_surj_continuous
,segment_mono_surj_continuous
- lemmas
segment_can_le_continuous
,segment_can_ge_continuous
,segment_can_continuous
- lemmas
near_can_continuousAcan_sym
,near_can_continuous
,near_continuous_can_sym
- lemmas
exp_continuous
,sqr_continuous
,sqrt_continuous
.
- lemmas
- in
measure.v
:- definition
seqDU
- lemmas
trivIset_seqDU
,bigsetU_seqDU
,seqDU_bigcup_eq
,seqDUE
- lemmas
bigcup_measurable
,bigcap_measurable
,bigsetI_measurable
- definition
- in
classical_sets.v
setU_bigcup
->bigcupUl
and reversedsetI_bigcap
->bigcapIl
and reversed- removed spurious disjunction in
bigcup0P
bigcup_ord
->bigcup_mkord
and reversedbigcup_of_set1
->bigcup_imset1
bigcupD1
->bigcup_setD1
andbigcapD1
->bigcap_setD1
and rephrased usingP `\ x
instead ofP `&` ~` [set x]
- order of arguments for
setIS
,setSI
,setUS
,setSU
,setSD
,setDS
- generalize lemma
perm_eq_trivIset
- in
topology.v
:- replace
closed_cvg_loc
andclosed_cvg
by a more general lemmaclosed_cvg
- replace
- in
normedtype.v
:- remove useless parameter from lemma
near_infty_natSinv_lt
- definition
is_interval
- the following lemmas have been generalized to
orderType
, renamed as follows, moved out of the moduleBigmaxBigminr
totopology.v
:bigmaxr_mkcond
->bigmax_mkcond
bigmaxr_split
->bigmax_split
bigmaxr_idl
->bigmax_idl
bigmaxrID
->bigmaxID
bigmaxr_seq1
->bigmax_seq1
bigmaxr_pred1_eq
->bigmax_pred1_eq
bigmaxr_pred1
->bigmax_pred1
bigmaxrD1
->bigmaxD1
ler_bigmaxr_cond
->ler_bigmax_cond
ler_bigmaxr
->ler_bigmax
bigmaxr_lerP
->bigmax_lerP
bigmaxr_sup
->bigmax_sup
bigmaxr_ltrP
->bigmax_ltrP
bigmaxr_gerP
->bigmax_gerP
bigmaxr_eq_arg
->bigmax_eq_arg
bigmaxr_gtrP
->bigmax_gtrP
eq_bigmaxr
->eq_bigmax
- module
BigmaxBigminr
->Bigminr
- remove useless parameter from lemma
- in
ereal.v
:- change definition
mule
such that 0 x oo = 0 adde
now defined usingnosimpl
andadde_subdef
mule
now defined usingnosimpl
andmule_subdef
- lemmas
lte_addl
,lte_subl_addr
,lte_subl_addl
,lte_subr_addr
,lte_subr_addr
,lte_subr_addr
,lb_ereal_inf_adherent
oppeD
to usefin_num
- weaken
realDomainType
tonumDomainType
inmule_ninfty_pinfty
,mule_pinfty_ninfty
,mule_pinfty_pinfty
,mule_ninfty_ninfty
,mule_neq0
,mule_ge0
,mule_le0
,mule_gt0
,mule_le0_ge0
,mule_ge0_le0
- change definition
- in
reals.v
:- generalize from
realType
torealDomainType
lemmashas_ub_image_norm
,has_inf_supN
- generalize from
- in
sequences.v
:- generalize from
realType
torealFieldType
lemmascvg_has_ub
,cvg_has_sup
,cvg_has_inf
- change the statements of
cvgPpinfty
,cvgPminfty
,cvgPpinfty_lt
- generalize
nondecreasing_seqP
,nonincreasing_seqP
,increasing_seqP
,decreasing_seqP
to equivalences - generalize
lee_lim
,ereal_cvgD_pinfty_fin
,ereal_cvgD_ninfty_fin
,ereal_cvgD
,ereal_limD
,ereal_pseries0
,eq_ereal_pseries
fromrealType
torealFieldType
- lemma
ereal_pseries_pred0
moved fromcsum.v
, minor generalization
- generalize from
- in
landau.v
:- lemma
cvg_shift
renamed tocvg_comp_shift
and moved tonormedtype.v
- lemma
- in
measure.v
:- lemmas
measureDI
,measureD
,sigma_finiteP
- lemmas
exist_congr
->eq_exist
and moved fromclasssical_sets.v
toboolp.v
predeqP
moved fromclasssical_sets.v
toboolp.v
- moved from
landau.v
tonormedtype.v
:- lemmas
comp_shiftK
,comp_centerK
,shift0
,center0
,near_shift
,cvg_shift
- lemmas
- lemma
exists2P
moved fromtopology.v
toboolp.v
- move from
sequences.v
tonormedtype.v
and generalize fromnat
toT : topologicalType
- lemmas
ereal_cvgN
- lemmas
- in
classical_sets.v
eqbigcup_r
->eq_bigcupr
eqbigcap_r
->eq_bigcapr
bigcup_distrr
->setI_bigcupr
bigcup_distrl
->setI_bigcupl
bigcup_refl
->bigcup_splitn
setMT
->setMTT
- in
ereal.v
:adde
->adde_subdef
mule
->mule_subdef
real_of_extended
->fine
real_of_extendedN
->fineN
real_of_extendedD
->fineD
EFin_real_of_extended
->fineK
real_of_extended_expand
->fine_expand
- in
sequences.v
:nondecreasing_seq_ereal_cvg
->nondecreasing_ereal_cvg
- in
topology.v
:nbhs'
->dnbhs
nbhsE'
->dnbhs
nbhs'_filter
->dnbhs_filter
nbhs'_filter_on
->dnbhs_filter_on
nbhs_nbhs'
->nbhs_dnbhs
Proper_nbhs'_regular_numFieldType
->Proper_dnbhs_regular_numFieldType
Proper_nbhs'_numFieldType
->Proper_dnbhs_numFieldType
ereal_nbhs'
->ereal_dnbhs
ereal_nbhs'_filter
->ereal_dnbhs_filter
ereal_nbhs'_le
->ereal_dnbhs_le
ereal_nbhs'_le_finite
->ereal_dnbhs_le_finite
Proper_nbhs'_numFieldType
->Proper_dnbhs_numFieldType
Proper_nbhs'_realType
->Proper_dnbhs_realType
nbhs'0_lt
->dnbhs0_lt
nbhs'0_le
->dnbhs0_le
continuity_pt_nbhs'
->continuity_pt_dnbhs
- in
measure.v
:measure_additive2
->measureU
measure_additive
->measure_bigcup
- in
boolp.v
:- definition
PredType
- local notation
predOfType
- definition
- in
nngnum.v
:- module
BigmaxrNonneg
containing the following lemmas:bigmaxr_mkcond
,bigmaxr_split
,bigmaxr_idl
,bigmaxrID
,bigmaxr_seq1
,bigmaxr_pred1_eq
,bigmaxr_pred1
,bigmaxrD1
,ler_bigmaxr_cond
,ler_bigmaxr
,bigmaxr_lerP
,bigmaxr_sup
,bigmaxr_ltrP
,bigmaxr_gerP
,bigmaxr_gtrP
- module
- in
sequences.v
:- lemma
closed_seq
- lemma
- in
normedtype.v
:- lemma
is_intervalPle
- lemma
- in
topology.v
:- lemma
continuous_cst
- definition
cvg_to_locally
- lemma
- in
csum.v
:- lemma
ub_ereal_sup_adherent_img
- lemma
- in
classical_sets.v
:- lemmas
bigcup_image
,bigcup_of_set1
- lemmas
bigcupD1
,bigcapD1
- lemmas
- in
boolp.v
:- definitions
equality_mixin_of_Type
,choice_of_Type
- definitions
- in
normedtype.v
:- lemma
cvg_bounded_real
- lemma
pseudoMetricNormedZModType_hausdorff
- lemma
- in
sequences.v
:- lemmas
seriesN
,seriesD
,seriesZ
,is_cvg_seriesN
,lim_seriesN
,is_cvg_seriesZ
,lim_seriesZ
,is_cvg_seriesD
,lim_seriesD
,is_cvg_seriesB
,lim_seriesB
,lim_series_le
,lim_series_norm
- lemmas
- in
measure.v
:- HB.mixin
AlgebraOfSets_from_RingOfSets
- HB.structure
AlgebraOfSets
and notationalgebraOfSetsType
- HB.instance
T_isAlgebraOfSets
in HB.buildersisAlgebraOfSets
- lemma
bigcup_set_cond
- definition
measurable_fun
- lemma
adde_undef_nneg_series
- lemma
adde_def_nneg_series
- lemmas
cvg_geometric_series_half
,epsilon_trick
- definition
measurable_cover
- lemmas
cover_measurable
,cover_subset
- definition
mu_ext
- lemmas
le_mu_ext
,mu_ext_ge0
,mu_ext0
,measurable_uncurry
,mu_ext_sigma_subadditive
- canonical
outer_measure_of_measure
- HB.mixin
- in
ereal.v
, definitionadde_undef
changed toadde_def
- consequently, the following lemmas changed:
- in
ereal.v
,adde_undefC
renamed toadde_defC
,fin_num_adde_undef
renamed tofin_num_adde_def
- in
sequences.v
,ereal_cvgD
andereal_limD
now use hypotheses withadde_def
- in
- consequently, the following lemmas changed:
- in
sequences.v
:- generalize
{in,de}creasing_seqP
,non{in,de}creasing_seqP
fromnumDomainType
toporderType
- generalize
- in
normedtype.v
:- generalized from
normedModType
topseudoMetricNormedZmodType
:nbhs_le_nbhs_norm
nbhs_norm_le_nbhs
nbhs_nbhs_norm
nbhs_normP
filter_from_norm_nbhs
nbhs_normE
filter_from_normE
near_nbhs_norm
nbhs_norm_ball_norm
nbhs_ball_norm
ball_norm_dec
ball_norm_sym
ball_norm_le
cvg_distP
cvg_dist
nbhs_norm_ball
dominated_by
strictly_dominated_by
sub_dominatedl
sub_dominatedr
dominated_by1
strictly_dominated_by1
ex_dom_bound
ex_strict_dom_bound
bounded_near
boundedE
sub_boundedr
sub_boundedl
ex_bound
ex_strict_bound
ex_strict_bound_gt0
norm_hausdorff
norm_closeE
norm_close_eq
norm_cvg_unique
norm_cvg_eq
norm_lim_id
norm_cvg_lim
norm_lim_near_cst
norm_lim_cst
norm_cvgi_unique
norm_cvgi_map_lim
distm_lt_split
distm_lt_splitr
distm_lt_splitl
normm_leW
normm_lt_split
cvg_distW
continuous_cvg_dist
add_continuous
- generalized from
- in
measure.v
:- generalize lemma
eq_bigcupB_of
- HB.mixin
Measurable_from_ringOfSets
changed toMeasurable_from_algebraOfSets
- HB.instance
T_isRingOfSets
becomesT_isAlgebraOfSets
in HB.buildersisMeasurable
- lemma
measurableC
now applies toalgebraOfSetsType
instead ofmeasureableType
- generalize lemma
- moved from
normedtype.v
toreals.v
:- lemmas
inf_lb_strict
,sup_ub_strict
- lemmas
- moved from
sequences.v
toreals.v
:- lemma
has_ub_image_norm
- lemma
- in
classical_sets.v
:bigcup_mkset
->bigcup_set
bigsetU
->bigcup
bigsetI
->bigcap
trivIset_bigUI
->trivIset_bigsetUI
- in
measure.v
:isRingOfSets
->isAlgebraOfSets
B_of
->seqD
trivIset_B_of
->trivIset_seqD
UB_of
->setU_seqD
bigUB_of
->bigsetU_seqD
eq_bigsetUB_of
->eq_bigsetU_seqD
eq_bigcupB_of
->eq_bigcup_seqD
eq_bigcupB_of_bigsetU
->eq_bigcup_seqD_bigsetU
- in
nngnum.v
:- lemma
filter_andb
- lemma
- in
sequences.v
:- lemma
dvg_harmonic
- lemma
- in
classical_sets.v
:- definitions
image
,image2
- definitions
- in
classical_sets.v
- notations
[set E | x in A]
and[set E | x in A & y in B]
now use definitionsimage
andimage2
resp. - notation
f @` A
now uses the definitionimage
- the order of arguments of
image
has changed compared to version 0.3.7: it is nowimage A f
(it used to beimage f A
)
- notations
- in
sequences.v
:- lemma
iter_addr
- lemma
- file
reals.v
:- lemmas
le_floor
,le_ceil
- lemmas
- in
ereal.v
:- lemmas
big_nat_widenl
,big_geq_mkord
- lemmas
lee_sum_nneg_natr
,lee_sum_nneg_natl
- lemmas
ereal_sup_gt
,ereal_inf_lt
- notation
0
/1
for0%R%:E
/1%R:%E
inereal_scope
- lemmas
- in
classical_sets.v
- lemma
subset_bigsetU_cond
- lemma
eq_imagel
- lemma
- in
sequences.v
:- notations
\sum_(i <oo) F i
- lemmas
ereal_pseries_sum_nat
,lte_lim
- lemmas
is_cvg_ereal_nneg_natsum_cond
,is_cvg_ereal_nneg_natsum
- lemma
ereal_pseriesD
,ereal_pseries0
,eq_ereal_pseries
- lemmas
leq_fact
,prod_rev
,fact_split
- definition
exp_coeff
- lemmas
exp_coeff_ge0
,series_exp_coeff0
,is_cvg_series_exp_coeff_pos
,normed_series_exp_coeff
,is_cvg_series_exp_coeff
,cvg_exp_coeff
- definition
expR
- notations
- in
measure.v
:- lemma
eq_bigcupB_of_bigsetU
- definitions
caratheodory_type
- definition
caratheodory_measure
and lemmacaratheodory_measure_complete
- internal definitions and lemmas that may be deprecated and hidden in the future:
caratheodory_measurable
, notation... .-measurable
,le_caratheodory_measurable
,outer_measure_bigcup_lim
,caratheodory_measurable_{set0,setC,setU_le,setU,bigsetU,setI,setD}
disjoint_caratheodoryIU
,caratheodory_additive
,caratheodory_lim_lee
,caratheodory_measurable_trivIset_bigcup
,caratheodory_measurable_bigcup
- definition
measure_is_complete
- lemma
- file
csum.v
:- lemmas
ereal_pseries_pred0
,ub_ereal_sup_adherent_img
- definition
fsets
, lemmasfsets_set0
,fsets_self
,fsetsP
,fsets_img
- definition
fsets_ord
, lemmasfsets_ord_nat
,fsets_ord_subset
- definition
csum
, lemmascsum0
,csumE
,csum_ge0
,csum_fset
csum_image
,ereal_pseries_csum
,csum_bigcup
- notation
\csum_(i in S) a i
- lemmas
- file
cardinality.v
- lemmas
in_inj_comp
,enum0
,enum_recr
,eq_set0_nil
,eq_set0_fset0
,image_nat_maximum
,fset_nat_maximum
- defintion
surjective
, lemmassurjective_id
,surjective_set0
,surjective_image
,surjective_image_eq0
,surjective_comp
- definition
set_bijective
, - lemmas
inj_of_bij
,sur_of_bij
,set_bijective1
,set_bijective_image
,set_bijective_subset
,set_bijective_comp
- definition
inverse
- lemmas
injective_left_inverse
,injective_right_inverse
,surjective_right_inverse
, - notation
`I_n
- lemmas
II0
,II1
,IIn_eq0
,II_recr
- lemmas
set_bijective_D1
,pigeonhole
,Cantor_Bernstein
- definition
card_le
, notation_ #<= _
- lemmas
card_le_surj
,surj_card_le
,card_lexx
,card_le0x
,card_le_trans
,card_le0P
,card_le_II
- definition
card_eq
, notation_ #= _
- lemmas
card_eq_sym
,card_eq_trans
,card_eq00
,card_eqP
,card_eqTT
,card_eq_II
,card_eq_le
,card_eq_ge
,card_leP
- lemma
set_bijective_inverse
- definition
countable
- lemmas
countable0
,countable_injective
,countable_trans
- definition
set_finite
- lemmas
set_finiteP
,set_finite_seq
,set_finite_countable
,set_finite0
- lemma
set_finite_bijective
- lemmas
subset_set_finite
,subset_card_le
- lemmas
injective_set_finite
,injective_card_le
,set_finite_preimage
- lemmas
surjective_set_finite
,surjective_card_le
- lemmas
set_finite_diff
,card_le_diff
- lemmas
set_finite_inter_set0_union
,set_finite_inter
- lemmas
ex_in_D
, definitionsmin_of_D
,min_of_D_seq
,infsub_enum
, lemmasmin_of_D_seqE
,increasing_infsub_enum
,sorted_infsub_enum
,injective_infsub_enum
,subset_infsub_enum
,infinite_nat_subset_countable
- definition
enumeration
, lemmasenumeration_id
,enumeration_set0
. - lemma
ex_enum_notin
, definitionsmin_of
,minf_of_e_seq
,smallest_of
- definition
enum_wo_rep
, lemmasenum_wo_repE
,min_of_e_seqE
,smallest_of_e_notin_enum_wo_rep
,injective_enum_wo_rep
,surjective_enum_wo_rep
,set_bijective_enum_wo_rep
,enumration_enum_wo_rep
,countable_enumeration
- lemmas
infinite_nat
,infinite_prod_nat
,countable_prod_nat
,countably_infinite_prod_nat
- lemmas
- in
classical_sets.v
- lemma
subset_bigsetU
- notation
f @` A
defined as[set f x | x in A]
instead of usingimage
- lemma
- in
ereal.v
:- change implicits of lemma
lee_sum_nneg_ord
ereal_sup_ninfty
andereal_inf_pinfty
made equivalences- change the notation
{ereal R}
to\bar R
and attach it to the scopeereal_scope
- argument of
%:E
in%R
by default F
argument of\sum
in%E
by default
- change implicits of lemma
- in
topology.v
:- change implicits of lemma
cvg_app
- change implicits of lemma
- in
normedtype.v
:coord_continuous
generalized
- in
sequences.v
:- change implicits of lemma
is_cvg_ereal_nneg_series
- statements changed from using sum of ordinals to sum of nats
- definition
series
- lemmas
ereal_nondecreasing_series
,ereal_nneg_series_lim_ge
- lemmas
is_cvg_ereal_nneg_series_cond
,is_cvg_ereal_nneg_series
- lemmas
ereal_nneg_series_lim_ge0
,ereal_nneg_series_pinfty
- definition
- change implicits of lemma
- in
ereal.v
:er
->extended
ERFin
->EFin
ERPInf
->EPInf
ERNInf
->ENInf
real_of_er
->real_of_extended
real_of_erD
->real_of_extendedD
ERFin_real_of_er
->EFin_real_of_extended
real_of_er_expand
->real_of_extended_expand
NERFin
->NEFin
addERFin
->addEFin
sumERFin
->sumEFin
subERFin
->subEFin
- in
reals.v
:ler_ceil
->ceil_ge
Rceil_le
->le_Rceil
le_Rceil
->Rceil_ge
ge_Rfloor
->Rfloor_le
ler_floor
->floor_le
Rfloor_le
->le_Rfloor
- in
topology.v
:- lemmas
onT_can
->onS_can
,onT_can_in
->onS_can_in
,in_onT_can
-> ``in_onS_can` (now in MathComp)
- lemmas
- in
sequences,v
:is_cvg_ereal_nneg_series_cond
- in
forms.v
:symmetric
->symmetric_form
- in
classical_sets.v
- lemmas
eq_set_inl
,set_in_in
- definition
image
- lemmas
- from
topology.v
:- lemmas
homoRL_in
,homoLR_in
,homo_mono_in
,monoLR_in
,monoRL_in
,can_mono_in
,onW_can
,onW_can_in
,in_onW_can
,onT_can
,onT_can_in
,in_onT_can
(now in MathComp)
- lemmas
- in
forms.v
:- lemma
mxdirect_delta
,row_mx_eq0
,col_mx_eq0
,map_mx_comp
- lemma
- in
topology.v
:- global instance
ball_filter
- module
regular_topology
with anExports
submodule- canonicals
pointedType
,filteredType
,topologicalType
,uniformType
,pseudoMetricType
- canonicals
- module
numFieldTopology
with anExports
submodule- many canonicals and coercions
- global instance
Proper_nbhs'_regular_numFieldType
- definition
dense
and lemmadenseNE
- global instance
- in
normedtype.v
:- definitions
ball_
,pointed_of_zmodule
,filtered_of_normedZmod
- lemmas
ball_norm_center
,ball_norm_symmetric
,ball_norm_triangle
- definition
pseudoMetric_of_normedDomain
- lemma
nbhs_ball_normE
- global instances
Proper_nbhs'_numFieldType
,Proper_nbhs'_realType
- module
regular_topology
with anExports
submodule- canonicals
pseudoMetricNormedZmodType
,normedModType
.
- canonicals
- module
numFieldNormedType
with anExports
submodule- many canonicals and coercions
- exports
Export numFieldTopology.Exports
- canonical
R_regular_completeType
,R_regular_CompleteNormedModule
- definitions
- in
reals.v
:- lemmas
Rfloor_lt0
,floor_lt0
,ler_floor
,ceil_gt0
,ler_ceil
- lemmas
has_sup1
,has_inf1
- lemmas
- in
ereal.v
:- lemmas
ereal_ballN
,le_ereal_ball
,ereal_ball_ninfty_oversize
,contract_ereal_ball_pinfty
,expand_ereal_ball_pinfty
,contract_ereal_ball_fin_le
,contract_ereal_ball_fin_lt
,expand_ereal_ball_fin_lt
,ball_ereal_ball_fin_lt
,ball_ereal_ball_fin_le
,sumERFin
,ereal_inf1
,eqe_oppP
,eqe_oppLRP
,oppe_subset
,ereal_inf_pinfty
- definition
er_map
- definition
er_map
- lemmas
adde_undefC
,real_of_erD
,fin_num_add_undef
,addeK
,subeK
,subee
,sube_le0
,lee_sub
- lemmas
addeACA
,muleC
,mule1
,mul1e
,abseN
- enable notation
x \is a fin_num
- definition
fin_num
, factfin_num_key
, lemmasfin_numE
,fin_numP
- definition
- lemmas
- in
classical_sets.v
:- notation
[disjoint ... & ..]
- lemmas
mkset_nil
,bigcup_mkset
,bigcup_nonempty
,bigcup0
,bigcup0P
,subset_bigcup_r
,eqbigcup_r
,eq_set_inl
,set_in_in
- notation
- in
nngnum.v
:- instance
invr_nngnum
- instance
- in
posnum.v
:- instance
posnum_nngnum
- instance
-
in
ereal.v
:- generalize lemma
lee_sum_nneg_subfset
- lemmas
nbhs_oo_up_e1
,nbhs_oo_down_e1
,nbhs_oo_up_1e
,nbhs_oo_down_1e
nbhs_fin_out_above
,nbhs_fin_out_below
,nbhs_fin_out_above_below
nbhs_fin_inbound
- generalize lemma
-
in
sequences.v
:- generalize lemmas
ereal_nondecreasing_series
,is_cvg_ereal_nneg_series
,ereal_nneg_series_lim_ge0
,ereal_nneg_series_pinfty
- generalize lemmas
-
in
measure.v
:- generalize lemma
bigUB_of
- generalize theorem
Boole_inequality
- generalize lemma
-
in
classical_sets.v
:- change the order of arguments of
subset_trans
- change the order of arguments of
-
canonicals and coercions have been changed so that there is not need anymore for explicit types casts to
R^o
,[filteredType R^o of R^o]
,[filteredType R^o * R^o of R^o * R^o]
,[lmodType R of R^o]
,[normedModType R of R^o]
,[topologicalType of R^o]
,[pseudoMetricType R of R^o]
-
sequences.v
now importsnumFieldNormedType.Exports
-
topology.v
now importsreals
-
normedtype.v
now importsvector
,fieldext
,falgebra
,numFieldTopology.Exports
-
derive.v
now importsnumFieldNormedType.Exports
- in
ereal.v
:is_realN
->fin_numN
is_realD
->fin_numD
ereal_sup_set0
->ereal_sup0
ereal_sup_set1
->ereal_sup1
ereal_inf_set0
->ereal_inf0
- in
topology.v
:- section
numFieldType_canonical
- section
- in
normedtype.v
:- lemma
R_ball
- definition
numFieldType_pseudoMetricNormedZmodMixin
- canonical
numFieldType_pseudoMetricNormedZmodType
- global instance
Proper_nbhs'_realType
- lemma
R_normZ
- definition
numFieldType_NormedModMixin
- canonical
numFieldType_normedModType
- lemma
- in
ereal.v
:- definition
is_real
- definition
- in
boolp.v
:- lemmas
iff_notr
,iff_not2
- lemmas
- in
classical_sets.v
:- lemmas
subset_has_lbound
,subset_has_ubound
- lemma
mksetE
- definitions
cover
,partition
,pblock_index
,pblock
- lemmas
trivIsetP
,trivIset_sets
,trivIset_restr
,perm_eq_trivIset
- lemma
fdisjoint_cset
- lemmas
setDT
,set0D
,setD0
- lemmas
setC_bigcup
,setC_bigcap
- lemmas
- in
reals.v
:- lemmas
sup_setU
,inf_setU
- lemmas
RtointN
,floor_le0
- definition
Rceil
, lemmasisint_Rceil
,Rceil0
,le_Rceil
,Rceil_le
,Rceil_ge0
- definition
ceil
, lemmasRceilE
,ceil_ge0
,ceil_le0
- lemmas
- in
ereal.v
:- lemmas
esum_fset_ninfty
,esum_fset_pinfty
,esum_pinfty
- lemmas
- in
normedtype.v
:- lemmas
ereal_nbhs'_le
,ereal_nbhs'_le_finite
- lemmas
ball_open
- definition
closed_ball_
, lemmasclosed_closed_ball_
- definition
closed_ball
, lemmasclosed_ballxx
,closed_ballE
,closed_ball_closed
,closed_ball_subset
,nbhs_closedballP
,subset_closed_ball
- lemmas
nbhs0_lt
,nbhs'0_lt
,interior_closed_ballE
, open_nbhs_closed_ball` - section "LinearContinuousBounded"
- lemmas
linear_boundedP
,linear_continuous0
,linear_bounded0
,continuousfor0_continuous
,linear_bounded_continuous
,bounded_funP
- lemmas
- lemmas
- in
measure.v
:- definition
sigma_finite
- definition
- in
classical_sets.v
:- generalization and change of
trivIset
(and thus lemmastrivIset_bigUI
andtrivIset_setI
) bigcup_distrr
,bigcup_distrl
generalized
- generalization and change of
- header in
normedtype.v
, precisions onbounded_fun
- in
reals.v
:floor_ge0
generalized and renamed tofloorR_ge_int
- in
ereal.v
,ereal_scope
notation scope:x <= y
notation changed tolee (x : er _) (y : er _)
andonly printing
notationx <= y
forlee x y
- same change for
<
- change extended to notations
_ <= _ <= _
,_ < _ <= _
,_ <= _ < _
,_ < _ < _
- in
reals.v
:floor
->Rfloor
isint_floor
->isint_Rfloor
floorE
->RfloorE
mem_rg1_floor
->mem_rg1_Rfloor
floor_ler
->Rfloor_ler
floorS_gtr
->RfloorS_gtr
floor_natz
->Rfloor_natz
Rfloor
->Rfloor0
floor1
->Rfloor1
ler_floor
->ler_Rfloor
floor_le0
->Rfloor_le0
ifloor
->floor
ifloor_ge0
->floor_ge0
- in
topology.v
:ball_ler
->le_ball
- in
normedtype.v
,bounded_on
->bounded_near
- in
measure.v
:AdditiveMeasure.Measure
->AdditiveMeasure.Axioms
OuterMeasure.OuterMeasure
->OuterMeasure.Axioms
- in
topology.v
:ball_le
- in
classical_sets.v
:- lemma
bigcapCU
- lemma
- in
sequences.v
:- lemmas
ler_sum_nat
,sumr_const_nat
- lemmas
- in
classical_sets.v
:- lemmas
predeqP
,seteqP
- lemmas
- Requires:
- MathComp >= 1.12
- in
boolp.v
:- lemmas
contra_not
,contra_notT
,contra_notN
,contra_not_neq
,contraPnot
are now provided by MathComp 1.12
- lemmas
- in
normedtype.v
:- lemmas
ltr_distW
,ler_distW
are now provided by MathComp 1.12 as lemmasltr_distlC_subl
andler_distl_subl
- lemmas
maxr_real
andbigmaxr_real
are now provided by MathComp 1.12 as lemmasmax_real
andbigmax_real
- definitions
isBOpen
andisBClosed
are replaced by the definitionbound_side
- definition
Rhull
now usesBSide
instead ofBOpen_if
- lemmas
- Drop support for MathComp 1.11
- in
topology.v
:Typeclasses Opaque fmap.
- in
classical_sets.v
:- lemma
bigcup_distrl
- definition
trivIset
- lemmas
trivIset_bigUI
,trivIset_setI
- lemma
- in
ereal.v
:- definition
mule
and its notation*
(scopeereal_scope
) - definition
abse
and its notation`| |
(scopeereal_scope
)
- definition
- in
normedtype.v
:- lemmas
closure_sup
,near_infty_natSinv_lt
,limit_pointP
- lemmas
closure_gt
,closure_lt
- definition
is_interval
,is_intervalPle
,interval_is_interval
- lemma
connected_intervalP
- lemmas
interval_open
andinterval_closed
- lemmas
inf_lb_strict
,sup_ub_strict
,interval_unbounded_setT
,right_bounded_interior
,interval_left_unbounded_interior
,left_bounded_interior
,interval_right_unbounded_interior
,interval_bounded_interior
- definition
Rhull
- lemma
sub_Rhull
,is_intervalP
- lemmas
- in
measure.v
:- definition
bigcup2
, lemmabigcup2E
- definitions
isSemiRingOfSets
,SemiRingOfSets
, notationsemiRingOfSetsType
- definitions
RingOfSets_from_semiRingOfSets
,RingOfSets
, notationringOfSetsType
- factory:
isRingOfSets
- definitions
Measurable_from_ringOfSets
,Measurable
- lemma
semiRingOfSets_measurable{I,D}
- definition
diff_fsets
, lemmassemiRingOfSets_diff_fsetsE
,semiRingOfSets_diff_fsets_disjoint
- definitions
isMeasurable
- factory:
isMeasurable
- lemma
bigsetU_measurable
,measurable_bigcap
- definitions
semi_additive2
,semi_additive
,semi_sigma_additive
- lemmas
semi_additive2P
,semi_additiveE
,semi_additive2E
,semi_sigma_additive_is_additive
,semi_sigma_additiveE
Module AdditiveMeasure
- notations
additive_measure
,{additive_measure set T -> {ereal R}}
- notations
- lemmas
measure_semi_additive2
,measure_semi_additive
,measure_semi_sigma_additive
- lemma
semi_sigma_additive_is_additive
, canonical/coercionmeasure_additive_measure
- lemma
sigma_additive_is_additive
- notations
ringOfSetsType
,outer_measure
- definition
negligible
and its notation.-negligible
- lemmas
negligibleP
,negligible_set0
- definition
almost_everywhere
and its notation{ae mu, P}
- lemma
satisfied_almost_everywhere
- definition
sigma_subadditive
Module OuterMeasure
- notation
outer_measure
,{outer_measure set T -> {ereal R}}
- notation
- lemmas
outer_measure0
,outer_measure_ge0
,le_outer_measure
,outer_measure_sigma_subadditive
,le_outer_measureIC
- definition
- in
boolp.v
:- lemmas
and3_asboolP
,or3_asboolP
,not_and3P
- lemmas
- in
classical_sets.v
:- lemma
bigcup_sup
- lemma
- in
topology.v
:- lemmas
closure0
,separatedC
,separated_disjoint
,connectedP
,connected_subset
,bigcup_connected
- definition
connected_component
- lemma
component_connected
- lemmas
- in
ereal.v
:- notation
x >= y
defined asy <= x
(only parsing) instead ofgee
- notation
x > y
defined asy < x
(only parsing) instead ofgte
- definition
mkset
- lemma
eq_set
- notation
- in
classical_sets.v
:- notation
[set x : T | P]
now use definitionmkset
- notation
- in
reals.v
:- lemmas generalized from
realType
tonumDomainType
:setNK
,memNE
,lb_ubN
,ub_lbN
,nonemptyN
,has_lb_ubN
- lemmas generalized from
realType
torealDomainType
:has_ubPn
,has_lbPn
- lemmas generalized from
- in
classical_sets.v
:subset_empty
->subset_nonempty
- in
measure.v
:sigma_additive_implies_additive
->sigma_additive_is_additive
- in
topology.v
:nbhs_of
->locally_of
- in
topology.v
:connect0
->connected0
- in
boolp.v
:- lemma
not_andP
- lemma
not_exists2P
- lemma
- in
classical_sets.v
:- lemmas
setIIl
,setIIr
,setCS
,setSD
,setDS
,setDSS
,setCI
,setDUr
,setDUl
,setIDA
,setDD
- definition
dep_arrow_choiceType
- lemma
bigcup_set0
- lemmas
setUK
,setKU
,setIK
,setKI
,subsetEset
,subEset
,complEset
,botEset
,topEset
,meetEset
,joinEset
,subsetPset
,properPset
- Canonical
porderType
,latticeType
,distrLatticeType
,blatticeType
,tblatticeType
,bDistrLatticeType
,tbDistrLatticeType
,cbDistrLatticeType
,ctbDistrLatticeType
- lemmas
set0M
,setM0
,image_set0_set0
,subset_set1
,preimage_set0
- lemmas
setICr
,setUidPl
,subsets_disjoint
,disjoints_subset
,setDidPl
,setIidPl
,setIS
,setSI
,setISS
,bigcup_recl
,bigcup_distrr
,setMT
- new lemmas:
lb_set1
,ub_lb_set1
,ub_lb_refl
,lb_ub_lb
- new definitions and lemmas:
infimums
,infimum
,infimums_set1
,is_subset1_infimum
- new lemmas:
ge_supremum_Nmem
,le_infimum_Nmem
,nat_supremums_neq0
- lemmas
setUCl
,setDv
- lemmas
image_preimage_subset
,image_subset
,preimage_subset
- definition
proper
and its notation<
- lemmas
setUK
,setKU
,setIK
,setKI
- lemmas
setUK
,setKU
,setIK
,setKI
,subsetEset
,subEset
,complEset
,botEset
,topEset
,meetEset
,joinEset
,properEneq
- Canonical
porderType
,latticeType
,distrLatticeType
,blatticeType
,tblatticeType
,bDistrLatticeType
,tbDistrLatticeType
,cbDistrLatticeType
,ctbDistrLatticeType
on classicalset
.
- lemmas
- file
nngnum.v
- in
topology.v
:- definition
meets
and its notation#
- lemmas
meetsC
,meets_openr
,meets_openl
,meets_globallyl
,meets_globallyr
,meetsxx
andproper_meetsxx
. - definition
limit_point
- lemmas
subset_limit_point
,closure_limit_point
,closure_subset
,closureE
,closureC
,closure_id
- lemmas
cluster_nbhs
,clusterEonbhs
,closureEcluster
- definition
separated
- lemmas
connected0
,connectedPn
,connected_continuous_connected
- lemmas
closureEnbhs
,closureEonbhs
,limit_pointEnbhs
,limit_pointEonbhs
,closeEnbhs
,closeEonbhs
.
- definition
- in
ereal.v
:- notation
\+
(ereal_scope
) for function addition - notations
>
and>=
for comparison of extended real numbers - definition
is_real
, lemmasis_realN
,is_realD
,ERFin_real_of_er
- basic lemmas:
addooe
,adde_Neq_pinfty
,adde_Neq_ninfty
,addERFin
,subERFin
,real_of_erN
,lb_ereal_inf_adherent
- arithmetic lemmas:
oppeD
,subre_ge0
,suber_ge0
,lee_add2lE
,lte_add2lE
,lte_add
,lte_addl
,lte_le_add
,lte_subl_addl
,lee_subr_addr
,lee_subl_addr
,lte_spaddr
- lemmas
gee0P
,sume_ge0
,lee_sum_nneg
,lee_sum_nneg_ord
,lee_sum_nneg_subset
,lee_sum_nneg_subfset
- lemma
lee_addr
- lemma
lee_adde
- lemma
oppe_continuous
- lemmas
ereal_nbhs_pinfty_ge
,ereal_nbhs_ninfty_le
- notation
- in
sequences.v
:- definitions
arithmetic
,geometric
,geometric_invn
- lemmas
increasing_series
,cvg_shiftS
,mulrn_arithmetic
,exprn_geometric
,cvg_arithmetic
,cvg_expr
,geometric_seriesE
,cvg_geometric_series
,is_cvg_geometric_series
. - lemmas
ereal_cvgN
,ereal_cvg_ge0
,ereal_lim_ge
,ereal_lim_le
- lemma
ereal_cvg_real
- lemmas
is_cvg_ereal_nneg_series_cond
,is_cvg_ereal_nneg_series
,ereal_nneg_series_lim_ge0
,ereal_nneg_series_pinfty
- lemmas
ereal_cvgPpinfty
,ereal_cvgPninfty
,lee_lim
- lemma
ereal_cvgD
- with intermediate lemmas
ereal_cvgD_pinfty_fin
,ereal_cvgD_ninfty_fin
,ereal_cvgD_pinfty_pinfty
,ereal_cvgD_ninfty_ninfty
- with intermediate lemmas
- lemma
ereal_limD
- definitions
- in
normedtype.v
:- lemma
closed_ereal_le_ereal
- lemma
closed_ereal_ge_ereal
- lemmas
natmul_continuous
,cvgMn
andis_cvgMn
. uniformType
structure forereal
- lemma
- in
classical_sets.v
:- the index in
bigcup_set1
generalized fromnat
to someType
- lemma
bigcapCU
generalized - lemmas
preimage_setU
andpreimage_setI
are about thesetU
andsetI
(instead ofbigcup
andbigcap
) eqEsubset
changed from an implication to an equality
- the index in
- lemma
asboolb
moved fromdiscrete.v
toboolp.v
- lemma
exists2NP
moved fromdiscrete.v
toboolp.v
- lemma
neg_or
moved fromdiscrete.v
toboolp.v
and renamed tonot_orP
- definitions
dep_arrow_choiceClass
anddep_arrow_pointedType
slightly generalized and moved fromtopology.v
toclassical_sets.v
- the types of the topological notions for
numFieldType
have been moved fromnormedtype.v
totopology.v
- the topology of extended real numbers has been moved from
normedtype.v
toereal.v
(including the notions of filters) numdFieldType_lalgType
innormedtype.v
renamed tonumFieldType_lalgType
intopology.v
- in
ereal.v
:- the first argument of
real_of_er
is now maximal implicit - the first argument of
is_real
is now maximal implicit - generalization of
lee_sum
- the first argument of
- in
boolp.v
:- rename
exists2NP
toforall2NP
and make it bidirectionnal
- rename
- moved the definition of
{nngnum _}
and the related bigmax theory to the newnngnum.v
file
- in
classical_sets.v
:setIDl
->setIUl
setUDl
->setUIl
setUDr
->setUIr
setIDr
->setIUl
setCE
->setTD
preimage_setU
->preimage_bigcup
,preimage_setI
->preimage_bigcap
- in
boolp.v
:contrap
->contra_not
contrapL
->contraPnot
contrapR
->contra_notP
contrapLR
->contraPP
- in
boolp.v
:contrapNN
,contrapTN
,contrapNT
,contrapTT
eqNN
- in
normedtype.v
:forallN
eqNNP
existsN
- in
discrete.v
:existsP
existsNP
- in
topology.v
:close_to
close_cluster
, which is subsumed bycloseEnbhs
- in
boolp.v
, new lemmaandC
- in
topology.v
:- new lemma
open_nbhsE
uniformType
a structure for uniform spaces based on entourages (entourage
)uniformType
structure on products, matrices, function spaces- definitions
nbhs_
,topologyOfEntourageMixin
,split_ent
,nbhsP
,entourage_set
,entourage_
,uniformityOfBallMixin
,nbhs_ball
- lemmas
nbhs_E
,nbhs_entourageE
,filter_from_entourageE
,entourage_refl
,entourage_filter
,entourageT
,entourage_inv
,entourage_split_ex
,split_entP
,entourage_split_ent
,subset_split_ent
,entourage_split
,nbhs_entourage
,cvg_entourageP
,cvg_entourage
,cvg_app_entourageP
,cvg_mx_entourageP
,cvg_fct_entourageP
,entourage_E
,entourage_ballE
,entourage_from_ballE
,entourage_ball
,entourage_proper_filter
,open_nbhs_entourage
,entourage_close
completePseudoMetricType
structurecompletePseudoMetricType
structure on matrices and function spaces
- new lemma
- in
classical_sets.v
:- lemmas
setICr
,setUidPl
,subsets_disjoint
,disjoints_subset
,setDidPl
,setIidPl
,setIS
,setSI
,setISS
,bigcup_recl
,bigcup_distrr
,setMT
- lemmas
- in
ereal.v
:- notation
\+
(ereal_scope
) for function addition - notations
>
and>=
for comparison of extended real numbers - definition
is_real
, lemmasis_realN
,is_realD
,ERFin_real_of_er
,adde_undef
- basic lemmas:
addooe
,adde_Neq_pinfty
,adde_Neq_ninfty
,addERFin
,subERFin
,real_of_erN
,lb_ereal_inf_adherent
- arithmetic lemmas:
oppeD
,subre_ge0
,suber_ge0
,lee_add2lE
,lte_add2lE
,lte_add
,lte_addl
,lte_le_add
,lte_subl_addl
,lee_subr_addr
,lee_subl_addr
,lte_spaddr
,addeAC
,addeCA
- notation
- in
normedtype.v
:- lemmas
natmul_continuous
,cvgMn
andis_cvgMn
. uniformType
structure forereal
- lemmas
- in
sequences.v
:- definitions
arithmetic
,geometric
- lemmas
telescopeK
,seriesK
,increasing_series
,cvg_shiftS
,mulrn_arithmetic
,exprn_geometric
,cvg_arithmetic
,cvg_expr
,geometric_seriesE
,cvg_geometric_series
,is_cvg_geometric_series
.
- definitions
- moved from
normedtype.v
toboolp.v
and renamed:forallN
->forallNE
existsN
->existsNE
topology.v
:unif_continuous
usesentourage
pseudoMetricType
inherits fromuniformType
generic_source_filter
andset_filter_source
use entouragescauchy
is based on entourages and its former version is renamedcauchy_ball
completeType
inherits fromuniformType
and not frompseudoMetricType
- moved from
posnum.v
toRbar.v
: notationposreal
- moved from
normedtype.v
toRstruct.v
:- definitions
R_pointedType
,R_filteredType
,R_topologicalType
,R_uniformType
,R_pseudoMetricType
- lemmas
continuity_pt_nbhs
,continuity_pt_cvg
,continuity_ptE
,continuity_pt_cvg'
,continuity_pt_nbhs'
,nbhs_pt_comp
- lemmas
close_trans
,close_cvgxx
,cvg_closeP
andclose_cluster
are valid for auniformType
- moved
continuous_withinNx
fromnormedType.v
totopology.v
and generalised it touniformType
- definitions
- moved from
measure.v
tosequences.v
ereal_nondecreasing_series
ereal_nneg_series_lim_ge
(renamed fromseries_nneg
)
- in
classical_sets.v
,ub
andlb
are renamed toubound
andlbound
- new lemmas:
setUCr
,setCE
,bigcup_set1
,bigcapCU
,subset_bigsetU
- in
boolp.v
,existsPN
->not_existsP
forallPN
->not_forallP
Nimply
->not_implyP
- in
classical_sets.v
,ub
andlb
are renamed toubound
andlbound
- in
ereal.v
:eadd
->adde
,eopp
->oppe
- in
topology.v
:locally
->nbhs
locally_filterE
->nbhs_filterE
locally_nearE
->nbhs_nearE
Module Export LocallyFilter
->Module Export NbhsFilter
locally_simpl
->nbhs_simpl
- three occurrences
near_locally
->near_nbhs
Module Export NearLocally
->Module Export NearNbhs
locally_filter_onE
->nbhs_filter_onE
filter_locallyT
->filter_nbhsT
Global Instance locally_filter
->Global Instance nbhs_filter
Canonical locally_filter_on
->Canonical nbhs_filter_on
neigh
->open_nbhs
locallyE
->nbhsE
locally_singleton
->nbhs_singleton
locally_interior
->nbhs_interior
neighT
->open_nbhsT
neighI
->open_nbhsI
neigh_locally
->open_nbhs_nbhs
within_locallyW
->within_nbhsW
prod_loc_filter
->prod_nbhs_filter
prod_loc_singleton
->prod_nbhs_singleton
prod_loc_loc
->prod_nbhs_nbhs
mx_loc_filter
->mx_nbhs_filter
mx_loc_singleton
->mx_nbhs_singleton
mx_loc_loc
->mx_nbhs_nbhs
locally'
->nbhs'
locallyE'
->nbhsE'
Global Instance locally'_filter
->Global Instance nbhs'_filter
Canonical locally'_filter_on
->Canonical nbhs'_filter_on
locally_locally'
->nbhs_nbhs'
Global Instance within_locally_proper
->Global Instance within_nbhs_proper
locallyP
->nbhs_ballP
locally_ball
->nbhsx_ballx
neigh_ball
->open_nbhs_ball
mx_locally
->mx_nbhs
prod_locally
->prod_nbhs
Filtered.locally_op
->Filtered.nbhs_op
locally_of
->nbhs_of
open_of_locally
->open_of_nhbs
locally_of_open
->nbhs_of_open
locally_
->nbhs_ball
- lemma
locally_ballE
->nbhs_ballE
locallyW
->nearW
nearW
->near_skip_subproof
locally_infty_gt
->nbhs_infty_gt
locally_infty_ge
->nbhs_infty_ge
cauchy_entouragesP
->cauchy_ballP
- in
normedtype.v
:locallyN
->nbhsN
locallyC
->nbhsC
locallyC_ball
->nbhsC_ball
locally_ex
->nbhs_ex
Global Instance Proper_locally'_numFieldType
->Global Instance Proper_nbhs'_numFieldType
Global Instance Proper_locally'_realType
->Global Instance Proper_nbhs'_realType
ereal_locally'
->ereal_nbhs'
ereal_locally
->ereal_nbhs
Global Instance ereal_locally'_filter
->Global Instance ereal_nbhs'_filter
Global Instance ereal_locally_filter
->Global Instance ereal_nbhs_filter
ereal_loc_singleton
->ereal_nbhs_singleton
ereal_loc_loc
->ereal_nbhs_nbhs
locallyNe
->nbhsNe
locallyNKe
->nbhsNKe
locally_oo_up_e1
->nbhs_oo_up_e1
locally_oo_down_e1
->nbhs_oo_down_e1
locally_oo_up_1e
->nbhs_oo_up_1e
locally_oo_down_1e
->nbhs_oo_down_1e
locally_fin_out_above
->nbhs_fin_out_above
locally_fin_out_below
->nbhs_fin_out_below
locally_fin_out_above_below
->nbhs_fin_out_above_below
locally_fin_inbound
->nbhs_fin_inbound
ereal_locallyE
->ereal_nbhsE
locally_le_locally_norm
->nbhs_le_locally_norm
locally_norm_le_locally
->locally_norm_le_nbhs
locally_locally_norm
->nbhs_locally_norm
filter_from_norm_locally
->filter_from_norm_nbhs
locally_ball_norm
->nbhs_ball_norm
locally_simpl
->nbhs_simpl
Global Instance filter_locally
->Global Instance filter_locally
locally_interval
->nbhs_interval
ereal_locally'_le
->ereal_nbhs'_le
ereal_locally'_le_finite
->ereal_nbhs'_le_finite
locally_image_ERFin
->nbhs_image_ERFin
locally_open_ereal_lt
->nbhs_open_ereal_lt
locally_open_ereal_gt
->nbhs_open_ereal_gt
locally_open_ereal_pinfty
->nbhs_open_ereal_pinfty
locally_open_ereal_ninfty
->nbhs_open_ereal_ninfty
continuity_pt_locally
->continuity_pt_nbhs
continuity_pt_locally'
->continuity_pt_nbhs'
nbhs_le_locally_norm
->nbhs_le_nbhs_norm
locally_norm_le_nbhs
->nbhs_norm_le_nbhs
nbhs_locally_norm
->nbhs_nbhs_norm
locally_normP
->nbhs_normP
locally_normE
->nbhs_normE
near_locally_norm
->near_nbhs_norm
- lemma
locally_norm_ball_norm
->nbhs_norm_ball_norm
locally_norm_ball
->nbhs_norm_ball
pinfty_locally
->pinfty_nbhs
ninfty_locally
->ninfty_nbhs
- lemma
locally_pinfty_gt
->nbhs_pinfty_gt
- lemma
locally_pinfty_ge
->nbhs_pinfty_ge
- lemma
locally_pinfty_gt_real
->nbhs_pinfty_gt_real
- lemma
locally_pinfty_ge_real
->nbhs_pinfty_ge_real
locally_minfty_lt
->nbhs_minfty_lt
locally_minfty_le
->nbhs_minfty_le
locally_minfty_lt_real
->nbhs_minfty_lt_real
locally_minfty_le_real
->nbhs_minfty_le_real
lt_ereal_locally
->lt_ereal_nbhs
locally_pt_comp
->nbhs_pt_comp
- in
derive.v
:derivable_locally
->derivable_nbhs
derivable_locallyP
->derivable_nbhsP
derivable_locallyx
->derivable_nbhsx
derivable_locallyxP
->derivable_nbhsxP
- in
sequences.v
,cvg_comp_subn
->cvg_centern
,cvg_comp_addn
->cvg_shiftn
,telescoping
->telescope
sderiv1_series
->seriesSB
telescopingS0
->eq_sum_telescope
- in
topology.v
:- definitions
entourages
,topologyOfBallMixin
,ball_set
- lemmas
locally_E
,entourages_filter
,cvg_cauchy_ex
- definitions
- in
boolp.v
, lemmas for classical reasoningexistsNP
,existsPN
,forallNP
,forallPN
,Nimply
,orC
. - in
classical_sets.v
, definitions for supremums:ul
,lb
,supremum
- in
ereal.v
:- technical lemmas
lee_ninfty_eq
,lee_pinfty_eq
,lte_subl_addr
,eqe_oppLR
- lemmas about supremum:
ereal_supremums_neq0
- definitions:
ereal_sup
,ereal_inf
- lemmas about
ereal_sup
:ereal_sup_ub
,ub_ereal_sup
,ub_ereal_sup_adherent
- technical lemmas
- in
normedtype.v
:- function
contract
(bijection from{ereal R}
toR
) - function
expand
(that cancelscontract
) ereal_pseudoMetricType R
- function
- in
reals.v
,pred
replaced byset
fromclassical_sets.v
- change propagated in many files
This release is compatible with MathComp version 1.11+beta1.
The biggest change of this release is compatibility with MathComp 1.11+beta1. The latter introduces in particular ordered types. All norms and absolute values have been unified, both in their denotation `|_| and in their theory.
sequences.v
: Main theorems about sequences and series, and examples- Definitions:
[sequence E]_n
is a special notation forfun n => E
series u_
is the sequence of partial sums[normed S]
is the series of absolute values, if S is a seriesharmonic
is the name of a sequence, applyseries
to them to get the series.
- Theorems:
- lots of helper lemmas to prove convergence of sequences
- convergence of harmonic sequence
- convergence of a series implies convergence of a sequence
- absolute convergence implies convergence of series
- Definitions:
- in
ereal.v
: lemmas about extended reals' arithmetic - in
normedtype.v
: Definitions and lemmas about generic domination, boundedness, and lipschitz- See header for the notations and their localization
- Added a bunch of combinators to extract existential witnesses
- Added
filter_forall
(commutation between a filter and finite forall)
- about extended reals:
- equip extended reals with a structure of topological space
- show that extended reals are hausdorff
- in
topology.v
, predicateclose
- lemmas about bigmaxr and argmaxr
\big[max/x]_P F = F [arg max_P F]
- similar lemma for
bigmin
- lemmas for
within
- add
setICl
(intersection of set with its complement) prodnormedzmodule.v
ProdNormedZmodule
transfered from MathCompnonneg
type for non-negative numbers
bigmaxr
/bigminr
library- Lemmas
interiorI
,setCU
(complement of union is intersection of complements),setICl
,nonsubset
,setC0
,setCK
,setCT
,preimage_setI/U
, lemmas aboutimage
- in
Rstruct.v
,bigmaxr
is now defined usingbigop
inE
now supportsin_setE
andin_fsetE
- fix the definition of
le_ereal
,lt_ereal
- various generalizations to better use the hierarchy of
ssrnum
(numDomainType
,numFieldType
,realDomainType
, etc. when possible) intopology.v
,normedtype.v
,derive.v
, etc.
- renaming
flim
tocvg
cvg
corresponds to_ --> _
lim
corresponds tolim _
continuous
corresponds to continuity- some suffixes
_opp
,_add
... renamed toN
,D
, ...
- big refactoring about naming conventions
- complete the theory of
cvg_
,is_cvg_
andlim_
in normedtype.v with consistent naming schemes - fixed differential of
inv
which was defined on1 / x
instead ofx^-1
- two versions of lemmas on inverse exist
- one in realType (
Rinv_
lemmas), for which we have differential - a general one
numFieldType
(inv_
lemmas in normedtype.v, no differential so far, just continuity)
- one in realType (
- renamed
cvg_norm
tocvg_dist
to reuse the namecvg_norm
for convergence under the norm
- complete the theory of
Uniform
renamed toPseudoMetric
- rename
is_prop
tois_subset1
sub_trans
(replaced by MathComp'ssubrKA
)derive.v
does not requireReals
anymoreRbar.v
is almost not used anymore
- NIX support
- see
config.nix
,default.nix
- for the CI also
- see