Skip to content

Commit 951ff6e

Browse files
committed
added plot
1 parent 3295aad commit 951ff6e

File tree

1 file changed

+64
-0
lines changed

1 file changed

+64
-0
lines changed

lab_06/lab_06_example.ipynb

+64
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,64 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": null,
6+
"metadata": {},
7+
"outputs": [
8+
{
9+
"data": {
10+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALhhJREFUeJzt3X2UVVX5wPFneBs0mUFUGtAB30JFRELUFMwwzNQI/zFDNDRfUjEVfpmRtdA0EXMZ1TJMMnBZwlKXiCKOQohGgig6/jAKBTGRFzXCGUQZceb81j56+A3j3Jn7cl6evff3s9b1eu89M5w597w8Z+9nP7ssCIJAAAAAFOqQ9QoAAADkQqACAADUIlABAABqEagAAAC1CFQAAIBaBCoAAEAtAhUAAKBWJ7FYU1OTbNy4Ubp16yZlZWVZrw4AAMiDKeG2bds26d27t3To0MHdQMUEKdXV1VmvBgAAKML69evlgAMOcDdQMS0p0R9aUVGR9eoAAIA81NfXhw0N0XXc2UAl6u4xQQqBCgAAdsknbYNkWgAAoBaBCgAAUItABQAAqEWgAgAA1CJQAQAAahGoAAAAtQhUAACAWgQqAABALQIVAACgltWVaQEAyKWxKZDl6/4r727bIT27dZXjDuohHTswga1tCFQAAM6peXWT3PjYKtlUt2PXe70qu8qkkf3lmwN6ZbpuKAxdPwAA54KUy//80m5BirG5bkf4vvkc9iBQAQA41d1jWlKCVj6L3jOfm+XQNrONlq7dInNrN4TPWW0zun4AAM4wOSktW1KaM5da87lZ7oRD9kl13WxSo6jrjBYVAIAzTOJsnMv5qEZZ1xmBCgDAGWZ0T5zL+aZRYdcZgQoAwBlmCLLposg1CNm8bz43y6G0rrO0EKgAAJxh6qSYPAqjZbASvTafU0/Fnq4zAhUAgFNMsue08wZLVeXu3TvmtXmfOip2dZ0x6gcA4BwTjJzav4rKtEV2nZnE2dayUMo+C/jS7DojUAEAOMkEJQxBLq7rzIzuMUFJoKDrjK4fAACgtuuMFhUAAKC264xABQAAqO06o+sHAACoRaACAADUIlABAABqEagAAAC1CFQAAIBaBCoAAEAtAhUAAKAWdVQAAJlrbApUFBeDPgQqAIBM1by6SW58bJVsqtux6z0zMZ6ZU4aZjkHXDwAg0yDFTIDXPEgxzOy95n3zOfxGoAIAyKy7x7SkNJ+hNxK9Zz43y8FfBCoAgEyYnJSWLSnNmfDEfG6Wg78IVAAAmTCJs3EuBzcRqAAAMmFG98S5HNxEoAIAyIQZgmxG9+QahGzeN5+b5eAvAhUAQCZMnRQzBNloGaxEr83n1FPxG4EKACAzpk7KtPMGS1Xl7t075rV5v2UdFTMCaOnaLTK3dkP4zIgg91HwDQCQKROMnNq/qt3KtBSG81NZEATWhqP19fVSWVkpdXV1UlFRkfXqAAASLgzX8oIVhTKttb7Ajes3XT8AANUoDOc3AhUAgGoUhvNb5oHKhg0b5LzzzpN99tlH9thjDznqqKPkxRdfzHq1AABKUBjOb5km027dulWGDh0qw4cPlyeeeEL2228/ef3112XvvffOcrUAAIpQGM5vmQYqU6ZMkerqapkxY8au9w466KCcyzc0NISP5sk4AAA/CsOZGZVby0Ip+2w4M4Xh3JRp18+jjz4qQ4YMkbPPPlt69uwpX/7yl2X69Ok5l588eXKYJRw9TJADAHCbj4XhqBejZHhy166fNtNNmDAhDFZeeOEFufrqq+Wuu+6SsWPH5tWiYoIVhicDgPt8qaPiw99ZX8Dw5EwDlS5duoQtKs8999yu96666qowYFm6dGm7P08dFQDwi2lZaK8wnM18qRdTb0sdlV69ekn//p8250WOOOIIeeuttzJbJwCAXiYoOeGQfWTUoP3DZ5eCFOrFKAxUzIif1atX7/bea6+9Jn379s1snQAAyAL1YhQGKuPHj5dly5bJLbfcImvWrJH7779f7r77bhk3blyWqwUAQOqoF6MwUDn22GNlzpw5MmvWLBkwYIDcdNNNMnXqVBkzZkyWqwUAQOqoF6N09uRvfetb4QMAAJ9RL0ZpCX0AAOBnvZh8EKgAAKCEGXpshiCblpPmqiq7OjM02bquHwAA8P9MMHJq/yqn68UUgkAFAABlBeqiejEgUAEAIBE+lMJPAzkqAAAkVAq/ZQE3M6LHvG8+j0uj4xMY0qICAECKpfBNx4/53OShlJp3UuNBqw0tKgAAWFgKvybFVpssEagAAGBZKfxGjyYwJFABAMCyUvjLPZrAkEAFAIAESuHnyj4x7/cqsRT+ux5NYEigAgCAZaXwe3o0gSGBCgAAlpXCPy6FVhstGJ4MAIBlpfA7ftZqY0b3mN8WODyBYVkQBNamBNfX10tlZaXU1dVJRUVF1qsDAECqaiyto1LI9ZsWFQAALPVNDyYwJFABAMBiHR2fwJBkWgAAoBaBCgAAUItABQAAqEWgAgAA1CJQAQAAahGoAAAAtQhUAACAWgQqAABALQIVAACgFpVpAQCpa2wKnC77jvgQqAAAUmXrRHrIBl0/AIBUg5TL//zSbkGKsbluR/i++RxojkAFAJBad49pSQla+Sx6z3xulgMiBCoAgFSYnJSWLSnNmfDEfG6WAyIEKgCAVJjE2TiXgx9IpgUARqGkwmzXOJezEftZ4QhUAHiPUSjpMBdls11N4mxrWSjmcl1V+enF20XsZ8Wh6weA1xiFkh7TcmAuykbLNoTotfncLGdaHpau3SJzazeEz7Yn2LKfFY8WFQDeam8Uirl4ms9P7V9F83xMTMvBtPMGf65loapZy4JrLQ/sZ6UhUAHgrUJGoZxwyD6prpvLTLBhLsqt5WpELQ8tL+pRy4MJcmwLVtjPSkOgAsBbjELJjglKWl6UXW15YD8rDTkqALzFKBRdXK2zwn5WGgIVAOL7KJRc9+bm/V4Oj0LRxtWWB/az0hCoAPBWIaNQ4EbLQ9yjiaLfN+elt+Wev70hc17+/O9lPysNOSoAvJbPKBS4UWcl7tFErf2+XL+X/ax4ZUEQWDs4vb6+XiorK6Wurk4qKiqyXh04gsqRfsr3e2f/SFY06sdofnGKtnBro37y+U5yjSZq6/fms55tXUDLWvm97D+FX78JVIBmXKvfgHixf+jbzvksa4KDYVMW5UzUjVpqllx3Sl5BQ3u/r9jf65P6Aq7fmeao3HDDDVJWVrbb4/DDD89yleAxKkeiLewf6TEBhrm4z7rkK/Kb7w4Kn83r1oKUfL6TuEcTtff7iv29UJqjcuSRR8rChQt3ve7UKfNVgodcrd+AeLB/6KizUux3EvdookJHHdk2SkmbzKMCE5hUVVXltWxDQ0P4aN50BMSBypFoC/uH3d9J3KOJCh11RH0Uy4cnv/7669K7d285+OCDZcyYMfLWW2/lXHby5Mlhn1b0qK6uTnVd4S5X6zcgHuwfdn8ncdcxiX5fe6iP4kCgcvzxx8vMmTOlpqZGpk2bJuvWrZOTTjpJtm3b1uryEydODBNvosf69etTX2e4icqRaAv7h93fSdx1TKLfl8/S1EexPFA5/fTT5eyzz5aBAwfKaaedJvPnz5f3339fHnjggVaXLy8vD7ODmz+AOFA5Em1h/7D/O4nqmJhROM2Z18VMdBj9vlwtK+Z9GydQ1CjzHJXmunfvLv369ZM1a9ZkvSrwTHSHZEYKlOWo38Cdkb/YP9z4TtqatbkYzX/f5rqP5L/bP5Yee5VLVYW/9VGSoKqOygcffCB9+vQJhy1fddVV7S5PHRXEjToZ0LB/UBQsfxyzdrKm4NuPfvQjGTlypPTt21c2btwokyZNktraWlm1apXst99+7f48gQqSwEUCWe4fXHgLxzFrn0Ku35l2/bz99tsyevRo2bJlSxiYDBs2TJYtW5ZXkAJkVb8Bfkty/8hVlj0qYEbOQ+s4Zt2WaaAye/bsLP95AFCDonKA0joqAID4y7wDriBQAQAFKCoHtI5ABQAUoKgcYEEdFQDwvYCZSZxtLU+l7LPiZBSVix+jhnQjUAEABSgqlw2Gg+tH1w8AKBF3mXfkNxy8ZRJzNBzcfI7s0aICAIrEXeYdrWM4uD0IVABAGQqY6RoOzneRLbp+AADeYTi4PQhUAADeYTi4PQhUAADeDgfPlX1i3jefMxw8ewQqAABvh4MbLYOVfIeDm4TcpWu3yNzaDeGzeY34kUwLAPB6OHjLOipVedRRof5KesqCILA2BKyvr5fKykqpq6uTioqKrFcHCaBiJFAYjpnkt1lUf6XlxTP6CWrexHv9pkUFanHHAhSGYyb54eDUX0kfOSpQiYqRQGE4ZtLJHymk/griQYsK1OGOBSgMx0x6LUvUX0kfLSpQhzsWoDAcM+m1LFF/JX0EKlCHOxagMBwz+bUsGebzUrqBqL+SPgIVqMMdC1AYjpn0WpbiqL+CwhCoQB3uWKCJDUW9OGbSbVmK6q+YeivNmdcMTY4fybRQJ7pjMf3J5gTb/LLAHQvSZMtwX46Z9FuWzPdvkpOpWZM8WlSgEncsyJptw305ZtJvWYrqr4watH/4rDVIabSgVbAtVKaFalTZRFb73bApi3LmO5R9FgAsue4Udfuj78dMFGBKjpYlX4I27a2ChVy/CVQAoAVz1zl6+rJ2l5t1yVfyrmiK9Gi9OKetRnGpf0roA4DypEzfWz6SRP6IOFUEkEAFAFJOyuSOX9f8PS5a9saWvIdqa99OJNMCsF7cyYJJJmXalqQL+9S8uknG/eXTPB0XigDSogLAakm0TiQ13Nel5njo0vhZV+KCVZvlT39/M++fs6EIIC0qAKwdDplk60QSw32ZkwdJqHl1UzhKzSSA5xuk2FQEkBYVALFKK/8ijdaJuJMymZMHaY3syYctRQBpUQEQmzTzL9JqnYizqBdz8iBOjW0E623pvmdnq+rJEKgAUDNzbSFdRja2TjAnD+K0vJ1gPZc7R9sTpBh0/QBIvYWjteGQhXYZ2dg6wZw8iNO7BQbhUUXlrygfjtwSLSoAYlFKC0cxXUa2tk4wJw/i0rOAINzmQJgWFQCxKLaFo9ikWJtbJ5KonEqlW/8c91mwbgL69vJUqiwuKEigAi9xUk//pBk1O7ds4SilyyhqnWjZZWTDSTnOyqlUuvVTxzaC9chFQw+UEf2rrD7HEajAO5zUk1FsC0epSbG+z+uSa3hq1G1Gd5LbvpkjWHfpnEagAq9wUk9WMS0ccSTFujCvSzGtfC5XuqXVM3/fdDxYJ1CBN1w+qWtS6Emz2C4jlxTbylfqSCutaPUsXEcHgvVcGPUDb1C+PD2FFEmLuoyMlktpT4rNukiejbVk2sOkjWiJQAXecPGk7oosh+ymNS9REkXykqolk9U2iaNoINxD1w+8oaFAGP3uuvrZs+5iKLXrJolusyy3iatdWSgNgQq8kXUuRNYXRRuk2c+edGJ1PkFpqa18cdeSyTrZnFZPqO76ufXWW6WsrEyuueaarFcFjsoyF4J+d12S7mIw3+ewKYtk9PRlcvXs2vDZvG75PcfRyhdXt5mGbhcNrZ7QR0WLygsvvCB/+MMfZODAgVmvChyXRYEwRhvpk2QXQyGtEnG18sXRbaah2yXrVk/olHmg8sEHH8iYMWNk+vTpcvPNN2e9OvBA2rkQGi4ASKeLodCgNM6um1K7zTR0u9g8LQIc7voZN26cnHnmmTJixIh2l21oaJD6+vrdHkDSw2dLpeECgHS6GIoZAq9lkkIt3S5atgf0yLRFZfbs2fLSSy+FXT/5mDx5stx4442JrxcjM+DiBQDJdzEUG5RqqCxq/r3ue3aW9z/cmXMZ83ka3S4atkdWuP4oClTWr18vV199tSxYsEC6ds3vBD1x4kSZMGHCrtemRaW6ujrW9WJkBuJGv7s+SXUxlBKU2lBZNM3LpQ3bI25cf5R1/axYsULeffddGTx4sHTq1Cl8PPPMM/Lb3/42/P/GxsbP/Ux5eblUVFTs9ogTIzOQBM2VV7Msdpa1fLoYCt0+UVCa65s07/dSGpSau/i2WlOMrR/utLpys+b9neuPwhaVr3/967Jy5crd3rvwwgvl8MMPl+uuu046duyY6vowMgOujTZqD3dvbXcxFLN9Cm2p0dTM73ouleb9neuP0kClW7duMmDAgN3e+8IXviD77LPP595PAyMzYFO/e6kXuKwLe2nSWhdDKdsn36BU24XT5Vwq7fs71x/lw5O1cP1uAjrE0e9e6gWOu7fkt097QanGC6dtuVT5Bus27O9cfywKVBYvXpzZv53m3YSm5l7YJY4LHHdvkuj2aXl8f2tg792Ob60XTptqmBQSrNuwv7vcmuVcoJKltO4mtDX3Ih1xBKdxXeC4e2tbKdsnn+Nb84VTYy5VqcG6Dfu7ba1ZaSNQSfFuQmNzL5IXV3Aa1wWOu7e2Fbt98j2+tV84NdcwKSZYt2F/t6k1y8vKtJokWRFRw4RfsHvIYVwXOJuH0KahmO1TyPFty4UzrcrNSVf+tWV/pyJvbrSopHQ3obm5F8mIOxchrgscd28S+/Yp5Pimmb94xQTrNu3vmluzskSLSkp3E9qbe6Hj7q8tcd4ZcvcW7/Yp5PjWXABQu2KDdZv2d62tWVmiRSUlNjT3Il5xB6dx3xlmcfdm04i3QrZPoce3DUmrGpXSGqWptcKm40ADApWU0NzrnySC07gvcGnOp2LjiLd8t08xx7emC6ctSg3WNcwfZONxkLWyIAiszd40kxJWVlZKXV1d7PP+JJlYKTkOMG1NkCj9rmnYlEXtXryWXHdKUUOVbbrA5RoR49K+z/GdHlsv9j4cB0lcvwlUUmbrAYbicPH6/4AtV75OKQGbNhzf6bEtWPfpOIj7+k3XT8po7vULuQh+jXjj+E4vkNDQjVMIn46DuBGoZMC2AwylnYR9v3j5NuKN45uWpdbOD74dB3EiUAFSOAn7fPFixJtffK/Anev88N1j++T18xwHn0cdFSCjSrO+sKUyKErnewXuts4PUxe+Jt337MxxUAQCFSBPvp+Ei0WBM3/EXeTQtfNDNKSa4yDhQGXs2LHy7LPPFvpjgPV8PgmXyqbKoCiez3kY+Zwftn64U8aP+BLHQdI5KmYo0YgRI6Rv375y4YUXhoHL/vvvX+ivAazjy0k4qdEavicV+8DnfKR8j/sD9/1COASZ4yDBQOWRRx6R9957T+677z659957ZdKkSWHgctFFF8moUaOkc+fOhf5KwAo+nISTHq3hc1KxD3yuwF3I+YHjIIUclf32208mTJggr7zyijz//PNy6KGHyvnnny+9e/eW8ePHy+uvv17MrwVUcz0plERhlMrnfCTXzw/WJtNu2rRJFixYED46duwoZ5xxhqxcuVL69+8vv/71r+NbS0ABl0/CJAojLr7mI7l8fshawSX0d+7cKY8++qjMmDFDnnrqKRk4cKBcfPHFcu655+4qgztnzhz5/ve/L1u3bpUk2VhCH/ZzsZjV0rVbZPT0Ze0uN+uSr9BkDSdL3MfFxfODdSX0e/XqJU1NTTJ69GhZvny5DBo06HPLDB8+XLp3717orwas4GJSqC+JwkhPGnkYxQRDSQdQLp4fslZwoGK6dM4++2zp2jV34pAJUtatW1fqugFquZYM50OiMNxSTMtFWq0drp0frMtRMUmzbQUpAOxDIiBcT/wmWdxeVKYFQCIgnE78JlncbgQqALwerQH3K0RTVdpuzJ7sCV8z8FEYEgHhYuI3yeJ2I1DxAMPlUAgSAbPBzURyid8ki9uNQMVxUQJZy57XKIGMJn0ge9xMJFum3+fS/i4gR8VhJJChVGbfMMXg5tZuCJ/ZV+LHaJTkE79JFrcbgYrDSCBDKcwFctiURWHF2qtn14bP5jUXzvhwM5Fe4jfJ4vai68dhJJChWHQZppN/UsjNBHlDpSd+kyxuJwIVh5FAhiTu8s0p3XxuTvic4EvLP2n4pCmv38HNRHyJ3ySL24euH4dRbRTFoMswvfyTN/+zPa/fw81EvMi9sgstKg6LEsjMCdEEJc0PRRLI2ubzUFG6DNNrmZq1/C2pqugq79QzGiUtjLCyD4GK46IEspYHpjn5cWC2zvcTmU9dhkkGpPm0TG2ub5DxI/rJ1IWvcTORAnKv7ESg4gESyNw4kaXVyuNLzYmkA9J8W5wO3HdPbiZSQO6VvQhULFbIhcumBLKsul00n8jSbOXxocswjYC0kJYpc2xyM5EsRljZi0DFUq52T2T5d2k9kWXRyuNyl2FaAWmhLVM23UzYiNwrexGoWEhz94TNf5fGE1mWrTyudhmmFZD60DJlE59yr1zD8GTLuFrJUsPfle8Jat+9ysWXocLRXf6oQfuHzy5cVNMMSKmGqgflGuxFi4pltHZPuPB3tddUH/mfB2rlhm8fmcpFRmMrj+3SvrN2tWXKNrRw2YsWFcu4euHS8He1NXFZc+/UN6Q2WRzN1W7cWbvYMmUjWrjsRIuKZVy9cGn5u6IT2Q2PrpLN9a0HRWmOALJtqLANhfK4sxav9xVauOxDoGIZ2y5cNv5d5kTWrbyzjLnn+cy72Gy6qNo0Es3lUU02yHpfYYSVXTLt+pk2bZoMHDhQKioqwscJJ5wgTzzxRJarpF5b3RPaLlw2/13/2d6gpovNhubq9ua0SaObrFBmuy257hSZdclX5DffHRQ+m9catqfLbNxXkK2yIAgyGx7y2GOPSceOHeVLX/qSmNW499575Ve/+pW8/PLLcuSRR7b78/X19VJZWSl1dXVhoOOTrO9IXP+7zERlo6cva3e58SO+JFeP6Od1t4pZr2FTFuVMho5aw0wQoGF9kR32FRRz/c40UGlNjx49wmDloosusiJQyfLiofXCpf3vyuf3RyfU9kYAGXcpadXISr5BnWmxoLldvD4+2VdQzPVbTY5KY2OjPPjgg7J9+/awC6g1DQ0N4aP5H+rz3b+r/axJ/l35fmfNc0PawvwgOkZswY5zHvsKrByevHLlStlrr72kvLxcLrvsMpkzZ4707/9prkJLkydPDiOw6FFdXS1ZoZ/VPoV+Z+bEe0073TpJF1yzgZYRW9B/zmNfgZWBymGHHSa1tbXy/PPPy+WXXy5jx46VVatWtbrsxIkTw2ai6LF+/XrxtYoq0vnOzMy2+fD5DpCKn+6L65zHvgIrA5UuXbrIoYceKsccc0zYYnL00UfLb37zm1aXNa0u0Qih6JGFrMuaI73vjDtA+0Zs4dPAwuSDzK3dED6XetMU1zmPfQXFUJOjEmlqatotD0Uj+lntS/Yr9jvTVN9FM+qS6JFE7lyc5zz2FVgVqJiunNNPP1369Okj27Ztk/vvv18WL14sTz75pGjGXbZ9J+nvHltd1HdmU8G1rFHx090ZyOM+57GvwJpA5d1335Xvfe97smnTpjA51hR/M0HKqaeeKppxl23fSfrXC1+X7nt2lroPdxb8nXEHmD9XR6K5kEdSygi1JM557CuwIlC55557xEbcZdt5ko4U851xBwifZyDnnAevk2ltZUNZc5/kc5J+/8Od4XDjYr8zZsCFz7lznPOQFXXJtDZx+S7btqq3+Z58zXBjU57bpr8N0JI75/I5D3oRqJTIxX7WrCvuJn2SdvE7A9LKneP4Qdro+oETFXcpJAXfUaMEriJQgRMVdzlJA+SRwE10/SCVUQNpYBgxQB4J3EOgAqcq7nKSBsgjgVsIVOBcxV1O0gDgDgIVeF1x17Zh2ADgGwIVeFt90sZh2PAXQTV8VRYEgb4hHHmqr68P5wiqq6uTioqKrFfHGT5cwHPNCxSd9hkhkT4uxH4fk/BLfQHXbwIVeHfRMH/bsCmLco5wirq4TAVbV/5m7bgQ50ZQDRcVcv2mjgq8m9emkGHYSJ6tRQbTYHNtIyAuBCrwjgvDsF3BhTj5oNpsu6Vrt8jc2g3hs6/bEvYimRbecWUYtgtsLzKoPaimSw0uoEUF3kl7XqBS72hdviOmdSu5oJouNbiCFhV4J81h2KXe0bp+R0zrVjK1jdrrUjM/Zz43VZxdyj+Dm2hRgZfSmLyt1DtaH+6ImfU6mck2SRiHS2hRgbeSnBeo1DtaX+6IfSsymNZkm5q71FwufYBkEKjAa0nNC1RqkqhPSabMeh1/UK21S831rkwkg0AFSECpd7Sa74iTwKzX8QbVGuftylW4LurKpHAdciFHBUhAqXe0Wu+Ik+RykUFbcluSQr0clIJABc7LYnhvqUmiJJnChoTxfJHci1LQ9QOnZdUnXmqSKEmmcKlLzbeuTMSLFhU4K+vhvaXe0Wq6I4a9NHSp+diVifjQogInaRneW+odrZY7YqAUGpN7YQ8CFThJ0/DeUodAJzWEGkgLXZkoBV0/HnB5rphc6BMHdKErE8WiRcVxvhZYok8c0IeuTBSDQMVhPhdYok8c0ImuTBSKrh9H+V5gSVvBKwBAcQhUHEWBJfrEAcAFdP04Kt8k0c31bieT0icOAHYjUHFUvkmiN837h+zRuYPTrQv0iQOAvej6cVR7c8VE/rt9ZypVWgEAKAaBiqPaSiZtjcuJtQAAexGoOCxKJt37C13aXM61xFofC9wBgKvIUfEgWPno40YZ/8ArXlRp9bXAHQC4ihYVD1RV7uFFldasZ0sGAMSPQMWDbof2EmvN+70sr9Lqe4E7AHAVXT8edDv4MHOpptmSAQDxoUUlw26HNFtfCq3SqrFlqC3MlgwAbqJFJYVuB9NOYT43FVKjVossWl/yrdKqtWWoLcyWDABuokUlg3l1skz6jKq0jhq0f/jcWpBiY0KqD3k4AOCjTAOVyZMny7HHHivdunWTnj17yllnnSWrV68W2xTS7aA56VPzurWH2ZJ1sq0LEYA+mQYqzzzzjIwbN06WLVsmCxYskJ07d8o3vvEN2b59u9ikkG4HzbMaa163fDBbsi6m9W3YlEUyevoyuXp2bfhsXmttlQOgU6Y5KjU1Nbu9njlzZtiysmLFCvnqV78qtoi6HUz3SGv3i2WfXSzNcvP+d6PapE8XElKZLVmHqAux5fEQdSESOAKwMkelrq4ufO7Ro/U8goaGBqmvr9/tYVu3g+akT83rFmceDpJlcxciAH3UBCpNTU1yzTXXyNChQ2XAgAE5c1oqKyt3Paqrq8W2bgfNSZ+a1w32sL0LEYAuaoYnm1yVV199VZYsWZJzmYkTJ8qECRN2vTYtKtqClfa6HTQXX9O8brCHC12IAPRQ0aJy5ZVXyrx58+Tpp5+WAw44IOdy5eXlUlFRsdvDxm4HzUmfmtcNdnClCxGADpm2qARBID/84Q9lzpw5snjxYjnooIPEF5qTPjWvG9xKLgcA1YGK6e65//77Ze7cuWEtlc2bN4fvm/yTPfbIb8Zfm0WtLxppXjfoRhcigDiVBaZZIyNlZa2fqGbMmCEXXHBBuz9vclRMUGNGC2nsBgJ8ZuNUDADSUcj1O/OuHwBuogsRgFOjfgC4hy5EAKUiUEEqTHEv7qwBAIUiUEHiyFUAAFhdRwXuz/nSslJpNOcLE9QBANpCoILEMOcLAKBUBCpIDHO+AABKRaCCxDDnCwCgVAQqSAxzvgAASkWggsTnfMk1CNm8bz5nzhcAQC4EKkh8zhejZbDCnC8AgHwQqCBRpk7KtPMGh7PlNmdem/epowIAaAsF35A45nwBABSLQAWpYM4XAEAx6PoBAABqEagAAAC16PpBopg1GQBQCgIVJIZZkwEApaLrB4lg1mQAQBwIVBA7Zk0GAMSFQAWxY9ZkAEBcCFQQO2ZNBgDEhUAFsWPWZABAXAhUEDtmTQYAxIVABbFj1mQAQFwIVJAIZk0GAMSBgm9IDLMmAwBKRaCCRDFrMgCgFHT9AAAAtQhUAACAWgQqAABALQIVAACgFoEKAABQi0AFAACoRaACAADUIlABAABqEagAAAC1CFQAAIBaBCoAAEAtAhUAAKAWgQoAAFCL2ZMt1NgUyPJ1/5V3t+2Qnt26ynEH9QhnKQYAwDUEKpapeXWT3PjYKtlUt2PXe70qu8qkkf3lmwN6ZbpuAADEja6fEls2lq7dInNrN4TP5nXSQcrlf35ptyDF2Fy3I3zffA4AgEtoUbGkZcMEQebfay0UMu+Zjh/z+an9q+gGAgA4gxYVS1o2TE5Ky3+vZbBiPjfLAQDgikwDlWeffVZGjhwpvXv3lrKyMnnkkUdEu/ZaNgzzedzdQCZxNs7lAACwQaaByvbt2+Xoo4+WO++8U2yRVcuGGd0T53IAANgg0xyV008/PXzkq6GhIXxE6uvrJW1ZtWyYIcgmB8Z0L7XWVmOyUqoqPx2qDACAK6zKUZk8ebJUVlbuelRXV6e+Dlm1bJgEWZOoa7RMlY1em89JpAUAuMSqQGXixIlSV1e367F+/frU1yFq2cgVDpj3eyXUsmFGE007b3DYctKceW3ep44KAMA1Vg1PLi8vDx9Zilo2zOgeE5QEKbdsmGDEDEGmMi0AwAdWBSpaRC0bLeuoVKVUIdYEJSccsk+i/wYAABoQqBSJlg0AABwPVD744ANZs2bNrtfr1q2T2tpa6dGjh/Tp00e0o2UDAACHA5UXX3xRhg8fvuv1hAkTwuexY8fKzJkzM1wzAAAgvgcqX/va1yQIkp3IDwAA2IscFahmpiIgDwgA/EWgArXSnqEaAKCPVQXf4I8sZqgGAOhDoAJ1spqhGgCgD4EK1MlqhmoAgD4EKlAnqxmqAQD6EKhAnaxmqAYA6EOgAnWynKEaAKALgQrUiWaoNloGK2nMUA0A0INABapnqDYzUjdnXpv3qaMCAH6g4BvUYoZqAACBClRjhmoA8BtdPwAAQC1aVIAWmAgRAPQgUAGaYSJEANCFrh/gM0yECAD6EKgATIQIAGoRqABMhAgAahGoAEyECABqEagATIQIAGoRqABMhAgAahGoAEyECABqEagAn2EiRADQh4JvQDNMhAgAuhCoAC0wESIA6EHXDwAAUItABQAAqEWgAgAA1CJQAQAAahGoAAAAtQhUAACAWgQqAABALQIVAACgFoEKAABQy+rKtEEQhM/19fVZrwoAAMhTdN2OruPOBirbtm0Ln6urq7NeFQAAUMR1vLKyss1lyoJ8whmlmpqaZOPGjdKtWzcpKysrKbIzwc769euloqIi1nXE57G908X2ThfbO11sbzu3twk9TJDSu3dv6dChg7stKuaPO+CAA2L7fWajs6Onh+2dLrZ3utje6WJ727e922tJiZBMCwAA1CJQAQAAahGoiEh5eblMmjQpfEby2N7pYnuni+2dLra3+9vb6mRaAADgNlpUAACAWgQqAABALQIVAACgFoEKAABQy5tA5c4775QDDzxQunbtKscff7wsX768zeUffPBBOfzww8PljzrqKJk/f35q6+rb9p4+fbqcdNJJsvfee4ePESNGtPv9oLT9OzJ79uywqvNZZ52V+Dr6vL3ff/99GTdunPTq1SscLdGvXz/OKQlu76lTp8phhx0me+yxR1hFdfz48bJjx47U1tdWzz77rIwcOTKsFmvOC4888ki7P7N48WIZPHhwuF8feuihMnPmzPhXLPDA7Nmzgy5dugR/+tOfgn/84x/BJZdcEnTv3j145513Wl3+73//e9CxY8fgtttuC1atWhX87Gc/Czp37hysXLky9XX3YXufe+65wZ133hm8/PLLwT//+c/gggsuCCorK4O333479XX3YXtH1q1bF+y///7BSSedFIwaNSq19fVtezc0NARDhgwJzjjjjGDJkiXhdl+8eHFQW1ub+rr7sL3/8pe/BOXl5eGz2dZPPvlk0KtXr2D8+PGpr7tt5s+fH1x//fXBww8/bEYDB3PmzGlz+TfeeCPYc889gwkTJoTXyt/97nfhtbOmpibW9fIiUDnuuOOCcePG7Xrd2NgY9O7dO5g8eXKry3/nO98JzjzzzN3eO/7444Mf/OAHia+rj9u7pU8++STo1q1bcO+99ya4ln5vb7ONTzzxxOCPf/xjMHbsWAKVBLf3tGnTgoMPPjj4+OOPU1xLf7e3WfaUU07Z7T1zIR06dGji6+oSySNQ+fGPfxwceeSRu713zjnnBKeddlqs6+J818/HH38sK1asCLsTms8RZF4vXbq01Z8x7zdf3jjttNNyLo/StndLH374oezcuVN69OiR4Jr6vb1/8YtfSM+ePeWiiy5KaU393d6PPvqonHDCCWHXzxe/+EUZMGCA3HLLLdLY2JjimvuzvU888cTwZ6LuoTfeeCPsZjvjjDNSW29fLE3pWmn1pIT5+M9//hOeEMwJojnz+l//+lerP7N58+ZWlzfvI/7t3dJ1110X9pG2PAAQz/ZesmSJ3HPPPVJbW5vSWvq9vc2FctGiRTJmzJjwgrlmzRq54oorwmDcVPhEvNv73HPPDX9u2LBh4Qy9n3zyiVx22WXy05/+NKW19sfmHNdKM8PyRx99FOYIxcH5FhXY5dZbbw0TPOfMmRMmziFeZlr1888/P0xg3nfffbNeHS80NTWFrVd33323HHPMMXLOOefI9ddfL3fddVfWq+Ykk9xpWqx+//vfy0svvSQPP/ywPP7443LTTTdlvWookvMtKuZk3LFjR3nnnXd2e9+8rqqqavVnzPuFLI/Stnfk9ttvDwOVhQsXysCBAxNeUz+399q1a+XNN98MM/ubX0iNTp06yerVq+WQQw5JYc392b/NSJ/OnTuHPxc54ogjwrtR07XRpUuXxNfbp+3985//PAzGL7744vC1GbW5fft2ufTSS8MA0XQdIR65rpUVFRWxtaYYzn9j5iRg7mL++te/7nZiNq9Nv3FrzPvNlzcWLFiQc3mUtr2N2267LbzjqampkSFDhqS0tv5tbzPkfuXKlWG3T/T49re/LcOHDw//3wzlRLz799ChQ8PuniggNF577bUwgCFIiX97mxy3lsFIFCQytV28UrtWBp4MbzPD1WbOnBkOobr00kvD4W2bN28OPz///PODn/zkJ7sNT+7UqVNw++23h8NlJ02axPDkBLf3rbfeGg4/fOihh4JNmzbtemzbti3Dv8Ld7d0So36S3d5vvfVWOIrtyiuvDFavXh3Mmzcv6NmzZ3DzzTdn+Fe4u73N+dps71mzZoXDZ5966qngkEMOCUdzom3mnGvKRJiHCQ/uuOOO8P///e9/h5+b7Wy2dyQannzttdeG10pTZoLhySUw47v79OkTXhDNcLdly5bt+uzkk08OT9bNPfDAA0G/fv3C5c3wq8cffzyDtfZje/ft2zc8KFo+zAkHyezfzRGoJL+9n3vuubDEgbngmqHKv/zlL8Mh4oh/e+/cuTO44YYbwuCka9euQXV1dXDFFVcEW7duzWjt7fH000+3ei6Otq95Ntu75c8MGjQo/G7Mvj1jxozY16vM/CfeNhoAAIB4OJ+jAgAA7EWgAgAA1CJQAQAAahGoAAAAtQhUAACAWgQqAABALQIVAACgFoEKAABQi0AFAACoRaACAADUIlABAABqEagAUOO9996TqqoqueWWW3a999xzz0mXLl0+N508AD8wKSEAVebPny9nnXVWGKAcdthhMmjQIBk1apTccccdWa8agAwQqABQZ9y4cbJw4UIZMmSIrFy5Ul544QUpLy/PerUAZIBABYA6H330kQwYMEDWr18vK1askKOOOirrVQKQEXJUAKizdu1a2bhxozQ1Ncmbb76Z9eoAyBAtKgBU+fjjj+W4444Lc1NMjsrUqVPD7p+ePXtmvWoAMkCgAkCVa6+9Vh566CF55ZVXZK+99pKTTz5ZKisrZd68eVmvGoAM0PUDQI3FixeHLSj33XefVFRUSIcOHcL//9vf/ibTpk3LevUAZIAWFQAAoBYtKgAAQC0CFQAAoBaBCgAAUItABQAAqEWgAgAA1CJQAQAAahGoAAAAtQhUAACAWgQqAABALQIVAACgFoEKAAAQrf4PlV37EPC1gkgAAAAASUVORK5CYII=",
11+
"text/plain": [
12+
"<Figure size 640x480 with 1 Axes>"
13+
]
14+
},
15+
"metadata": {},
16+
"output_type": "display_data"
17+
}
18+
],
19+
"source": [
20+
"import numpy as np\n",
21+
"import pandas as pd\n",
22+
"\n",
23+
"def simulate_data(n):\n",
24+
" x = np.random.uniform(0, 1, n)\n",
25+
" y = 2 + 3 * x + np.random.normal(0, 1, n)\n",
26+
" return x, y\n",
27+
"\n",
28+
"from matplotlib import pyplot as plt\n",
29+
"\n",
30+
"def plot_data(x, y):\n",
31+
" width = 100\n",
32+
" height = 100\n",
33+
" plt.scatter(x, y)\n",
34+
" plt.xlabel('x')\n",
35+
" plt.ylabel('y')\n",
36+
" plt.show()\n",
37+
"\n",
38+
"\n",
39+
"plot_data(*simulate_data(100))"
40+
]
41+
}
42+
],
43+
"metadata": {
44+
"kernelspec": {
45+
"display_name": ".venv",
46+
"language": "python",
47+
"name": "python3"
48+
},
49+
"language_info": {
50+
"codemirror_mode": {
51+
"name": "ipython",
52+
"version": 3
53+
},
54+
"file_extension": ".py",
55+
"mimetype": "text/x-python",
56+
"name": "python",
57+
"nbconvert_exporter": "python",
58+
"pygments_lexer": "ipython3",
59+
"version": "3.11.5"
60+
}
61+
},
62+
"nbformat": 4,
63+
"nbformat_minor": 2
64+
}

0 commit comments

Comments
 (0)