forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCXX_Api_Sample.cpp
131 lines (106 loc) · 5.34 KB
/
CXX_Api_Sample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Copyright(c) Microsoft Corporation.All rights reserved.
// Licensed under the MIT License.
//
#include <assert.h>
#include <vector>
#include <onnxruntime_cxx_api.h>
int main(int argc, char* argv[]) {
//*************************************************************************
// initialize enviroment...one enviroment per process
// enviroment maintains thread pools and other state info
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test");
// initialize session options if needed
Ort::SessionOptions session_options;
session_options.SetIntraOpNumThreads(1);
// If onnxruntime.dll is built with CUDA enabled, we can uncomment out this line to use CUDA for this
// session (we also need to include cuda_provider_factory.h above which defines it)
// #include "cuda_provider_factory.h"
// OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 1);
// Sets graph optimization level
// Available levels are
// ORT_DISABLE_ALL -> To disable all optimizations
// ORT_ENABLE_BASIC -> To enable basic optimizations (Such as redundant node removals)
// ORT_ENABLE_EXTENDED -> To enable extended optimizations (Includes level 1 + more complex optimizations like node fusions)
// ORT_ENABLE_ALL -> To Enable All possible opitmizations
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);
//*************************************************************************
// create session and load model into memory
// using squeezenet version 1.3
// URL = https://github.com/onnx/models/tree/master/squeezenet
#ifdef _WIN32
const wchar_t* model_path = L"squeezenet.onnx";
#else
const char* model_path = "squeezenet.onnx";
#endif
printf("Using Onnxruntime C++ API\n");
Ort::Session session(env, model_path, session_options);
//*************************************************************************
// print model input layer (node names, types, shape etc.)
Ort::AllocatorWithDefaultOptions allocator;
// print number of model input nodes
size_t num_input_nodes = session.GetInputCount();
std::vector<const char*> input_node_names(num_input_nodes);
std::vector<int64_t> input_node_dims; // simplify... this model has only 1 input node {1, 3, 224, 224}.
// Otherwise need vector<vector<>>
printf("Number of inputs = %zu\n", num_input_nodes);
// iterate over all input nodes
for (int i = 0; i < num_input_nodes; i++) {
// print input node names
char* input_name = session.GetInputName(i, allocator);
printf("Input %d : name=%s\n", i, input_name);
input_node_names[i] = input_name;
// print input node types
Ort::TypeInfo type_info = session.GetInputTypeInfo(i);
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType type = tensor_info.GetElementType();
printf("Input %d : type=%d\n", i, type);
// print input shapes/dims
input_node_dims = tensor_info.GetShape();
printf("Input %d : num_dims=%zu\n", i, input_node_dims.size());
for (int j = 0; j < input_node_dims.size(); j++)
printf("Input %d : dim %d=%jd\n", i, j, input_node_dims[j]);
}
// Results should be...
// Number of inputs = 1
// Input 0 : name = data_0
// Input 0 : type = 1
// Input 0 : num_dims = 4
// Input 0 : dim 0 = 1
// Input 0 : dim 1 = 3
// Input 0 : dim 2 = 224
// Input 0 : dim 3 = 224
//*************************************************************************
// Similar operations to get output node information.
// Use OrtSessionGetOutputCount(), OrtSessionGetOutputName()
// OrtSessionGetOutputTypeInfo() as shown above.
//*************************************************************************
// Score the model using sample data, and inspect values
size_t input_tensor_size = 224 * 224 * 3; // simplify ... using known dim values to calculate size
// use OrtGetTensorShapeElementCount() to get official size!
std::vector<float> input_tensor_values(input_tensor_size);
std::vector<const char*> output_node_names = {"softmaxout_1"};
// initialize input data with values in [0.0, 1.0]
for (unsigned int i = 0; i < input_tensor_size; i++)
input_tensor_values[i] = (float)i / (input_tensor_size + 1);
// create input tensor object from data values
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), 4);
assert(input_tensor.IsTensor());
// score model & input tensor, get back output tensor
auto output_tensors = session.Run(Ort::RunOptions{nullptr}, input_node_names.data(), &input_tensor, 1, output_node_names.data(), 1);
assert(output_tensors.size() == 1 && output_tensors.front().IsTensor());
// Get pointer to output tensor float values
float* floatarr = output_tensors.front().GetTensorMutableData<float>();
assert(abs(floatarr[0] - 0.000045) < 1e-6);
// score the model, and print scores for first 5 classes
for (int i = 0; i < 5; i++)
printf("Score for class [%d] = %f\n", i, floatarr[i]);
// Results should be as below...
// Score for class[0] = 0.000045
// Score for class[1] = 0.003846
// Score for class[2] = 0.000125
// Score for class[3] = 0.001180
// Score for class[4] = 0.001317
printf("Done!\n");
return 0;
}