-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCellularAutomata.h
198 lines (177 loc) · 5.22 KB
/
CellularAutomata.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#ifndef CELLULAR_AUTOMATA_H__
#define CELLULAR_AUTOMATA_H__
#include <vector>
#include <array>
template<class T, std::size_t Dim>
struct multi_vector_impl {
static_assert( Dim > 1 );
using type = std::vector<typename multi_vector_impl<T,Dim-1>::type>;
};
template<class T>
struct multi_vector_impl<T,1> {
using type = std::vector<T>;
};
template<class T, std::size_t Dim>
struct multi_vector_t : public multi_vector_impl<T,Dim>::type {
typedef typename multi_vector_impl<T,Dim>::type type;
using type::type;
multi_vector_t(const type& v) : type(v) {}
multi_vector_t<T,Dim-1>& child(int i)
{
typename multi_vector_t<T,Dim-1>::type& ret = type::at(i);
return *static_cast<multi_vector_t<T,Dim-1>*>(&ret);
}
};
template<class T, std::size_t Dim>
std::array<int,Dim> getDimensions(multi_vector_t<T,Dim>& vec)
{
std::array<int,Dim> ret;
ret.at(0) = vec.size();
if constexpr (Dim-1 > 0)
{
std::array<int,Dim-1> rest = getDimensions(vec.child(0));
for(int i = 0; i < Dim-1; ++i)
ret.at(i+1) = rest.at(i);
}
return ret;
}
template<class T, std::size_t Dim, std::size_t Dim2>
auto getElement(multi_vector_t<T,Dim>& vec, std::array<int,Dim2> F)
{
static_assert( Dim2 >= Dim );
if constexpr (Dim-1 > 0)
return getElement(vec.child(F.at(Dim2-Dim)), F);
else
return vec.at(F.at(Dim2-Dim));
}
template<int I, typename T, int Dim>
void recursive_resize(T& vec, std::array<int,Dim> sizes)
{
vec.resize(sizes.at(I));
if constexpr (I > 0)
for(auto& V : vec)
recursive_resize<I-1>(V, sizes);
}
#include "TemplateConfig.h"
#include <map>
#include <unordered_map>
#include <functional>
template <typename T, typename = std::void_t<>>
struct is_std_hashable : std::false_type { };
template <typename T>
struct is_std_hashable<T, std::void_t<decltype(std::declval<std::hash<T>>()(std::declval<T>()))>> : std::true_type { };
template <typename T>
constexpr bool is_std_hashable_v = is_std_hashable<T>::value;
// should provide:
// static constexpr void addNeighborCounts(std::unordered_map<T,int>& neighborCounts, const T& location);
// if the type T is hashable, and
// static constexpr void addNeighborCounts(std::map<T,int>& neighborCounts, const T& location);
// if not.
template<class T>
struct CALocationHelper;
struct CAConfigDim {};
struct CAConfigCellState {};
struct CAConfigLocation {};
struct CAConfigAliveState {};
template<class... Args>
class CellularAutomata {
static const int Dim = MyConfig::GetValueOrDefault<CAConfigDim, 2, Args...>::value;
using CellState = typename MyConfig::GetTypeOrDefault<CAConfigCellState, bool, Args...>::type;
using Location = typename MyConfig::GetTypeOrDefault<CAConfigLocation, std::array<int,Dim>, Args...>::type;
static const CellState AliveState = MyConfig::GetValueOrDefault<CAConfigAliveState, true, Args...>::value;
//use std::unordered_map if the type Value is hashable, otherwise use std::map
template<class Value>
using GridType = typename std::conditional<
is_std_hashable_v<Location>,
std::unordered_map<Location,Value>,
std::map<Location,Value>
>::type;
GridType<CellState> cells;
const std::function<CellState(CellState curState, int neighborCount)> updateFunc;
public:
CellularAutomata(decltype(updateFunc) func) : updateFunc(func) {}
CellState& getCell(Location loc)
{
return cells[loc];
}
int getNumberOfCellsOfState(CellState state)
{
int count = 0;
for(auto C : cells)
if( C.second == state )
++count;
return count;
}
void doOneStep()
{
//calculate neighbor counts
GridType<int> neighborCount;
for(auto C : cells)
{
if( C.second != AliveState ) continue;
CALocationHelper<Location>::addNeighborCounts(neighborCount, C.first);
}
//update based on user-supplied function
decltype(cells) next;
for(auto N : neighborCount)
{
next[N.first] = updateFunc(cells[N.first], N.second);
}
cells = next;
}
multi_vector_t<CellState,Dim> locationMap()
{
multi_vector_t<CellState,Dim> ret;
std::array<int,Dim> minDims, maxDims;
minDims.fill(10000);
maxDims.fill(-10000);
for(auto C : cells)
{
if( C.second != AliveState ) continue;
for(int d = 0; d < Dim; ++d)
{
minDims.at(d) = std::min(minDims.at(d), C.first.at(d));
maxDims.at(d) = std::max(maxDims.at(d), C.first.at(d));
}
}
std::array<int,Dim> len;
for(int i = 0; i < Dim; ++i)
{
len.at(Dim-i-1) = maxDims.at(i) - minDims.at(i) + 1;
}
recursive_resize<Dim-1>(ret, len);
for(auto C : cells)
{
if( C.second != AliveState ) continue;
auto loc = C.first;
for(int i = 0; i < Dim; ++i)
loc.at(i) -= minDims.at(i);
getElement(ret, loc) = C.second;
}
return ret;
}
};
#include "MultiForVar.h"
template<std::size_t Dim>
struct CALocationHelper<std::array<int,Dim>> {
typedef std::array<int,Dim> T;
static constexpr void addNeighborCounts(std::unordered_map<T,int>& neighborCounts, const T& location)
{
std::array<int,Dim> start{}, end{};
start.fill(-1);
end.fill(1+1); // go from [-1,2)
for(MultiForVar<Dim> F(start,end); !F.done(); ++F)
{
bool isSelf = true;
for(int i = 0; i < Dim; ++i)
if( F.index(i) != 0 )
isSelf = false;
if( isSelf ) continue;
auto neighborLoc = location;
for(int i = 0; i < Dim; ++i)
neighborLoc[i] += F.index(i);
neighborCounts[neighborLoc]++;
}
}
};
#endif /* CELLULAR_AUTOMATA_H__ */