-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathharry-potter-machine.py
executable file
·84 lines (65 loc) · 2.78 KB
/
harry-potter-machine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!bin/python
import argparse
from argparse import ArgumentParser
import os
import write_normalized_txt
import write_word2vec
import word2vec_api
import train_lstm
import reader
p = ArgumentParser(description='Harry Potter Machine - Generates Text from Given Books')
p.add_argument('-b', '--book', default='harry-potter')
p.add_argument('-s', '--sourcefile')
p.add_argument('-v', '--vocab', type=argparse.FileType('r'))
p.add_argument('-n', '--nocache', action='store_true', default=False)
p.add_argument('--sampleonly', action='store_true', default=False)
p.add_argument('--word2vec_complexity', type=int, default=300)
args = p.parse_args()
def create_dir_if_not_exists(dirname):
try:
os.stat(dirname)
except:
print("creating {0} dir".format(dirname))
os.makedirs(dirname)
if __name__ == '__main__':
print(args)
if not args.sampleonly:
print('running training pipeline... ')
create_dir_if_not_exists(os.path.join('data', args.book))
# Find / create the cleaned data
os.chdir(os.path.join('data', args.book))
if args.nocache or not (os.path.exists('raw.txt')):
print('normalizing input txt ...')
write_normalized_txt.writefile(args.sourcefile, 'raw.txt')
print('... wrote txt')
has_vocab = os.path.exists('vocab.txt')
wrong_size = False
if has_vocab: # Retrain vector model if its different dimensions
with open('vocab.txt') as f:
size = int(f.readline().split(' ')[1])
print('existing vocab size ' + str(size))
wrong_size = size != args.word2vec_complexity
# Find / create the vocab
if args.vocab is None and (args.nocache or not has_vocab or wrong_size):
print('training vocab ... ')
write_word2vec.train(inputfile='raw.txt', outputfile='vocab.txt', complexity=args.word2vec_complexity)
print('... vocab trained')
data_sets = {
'train.txt': 0.4,
'test.txt': 0.3,
'validate.txt': 0.3
}
missing_some = len([filename for filename in data_sets.keys() if os.path.isfile(filename)]) < len(data_sets)
if args.nocache or missing_some:
print('splitting data sets ...')
reader.split('raw.txt', data_sets)
print('... data sets split')
word2vec_model = word2vec_api.from_model_at(args.vocab if args.vocab is not None else 'vocab.txt')
if not args.sampleonly:
print(word2vec_model.vector_to_word(word2vec_model.word_to_vector('The')))
print('starting training ... ')
train_lstm.train(word2vec_model, reader.Text('train.txt', word2vec_model))
# train
print('... training done? ')
# (Continue) Training the model
# Sample the model