-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_record_file.py
125 lines (105 loc) · 3.96 KB
/
main_record_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
import os
import argparse
import numpy as np
from scipy.io import wavfile
from hmmlearn import hmm
from python_speech_features import mfcc
import audio_test
# Function to parse input arguments
def build_arg_parser():
parser = argparse.ArgumentParser(description='Trains the HMM classifier')
parser.add_argument("--input-folder", dest="input_folder", required=True,
help="Input folder containing the audio files in subfolders")
return parser
# Class to handle all HMM related processing
class HMMTrainer(object):
def __init__(self, model_name='GaussianHMM', n_components=4, cov_type='diag', n_iter=1000):
self.model_name = model_name
self.n_components = n_components
self.cov_type = cov_type
self.n_iter = n_iter
self.models = []
if self.model_name == 'GaussianHMM':
self.model = hmm.GaussianHMM(n_components=self.n_components,
covariance_type=self.cov_type, n_iter=self.n_iter)
else:
raise TypeError('Invalid model type')
# X is a 2D numpy array where each row is 13D
def train(self, X):
np.seterr(all='ignore')
self.models.append(self.model.fit(X))
# Run the model on input data
def get_score(self, input_data):
return self.model.score(input_data)
if __name__=='__main__':
args = build_arg_parser().parse_args()
input_folder = args.input_folder
hmm_models = []
# Parse the input directory
for dirname in os.listdir(input_folder):
# Get the name of the subfolder
subfolder = os.path.join(input_folder, dirname)
if not os.path.isdir(subfolder):
continue
# Extract the label
label = subfolder[subfolder.rfind('/') + 1:]
# Initialize variables
X = np.array([])
y_words = []
# Iterate through the audio files (leaving 1 file for testing in each class)
for filename in [x for x in os.listdir(subfolder) if x.endswith('.wav')][:-1]:
# Read the input file
filepath = os.path.join(subfolder, filename)
sampling_freq, audio = wavfile.read(filepath)
print sampling_freq
# Extract MFCC features
mfcc_features = mfcc(audio, sampling_freq)
# Append to the variable X
if len(X) == 0:
X = mfcc_features
else:
X = np.append(X, mfcc_features, axis=0)
# Append the label
y_words.append(label)
print 'X.shape =', X.shape
# Train and save HMM model
hmm_trainer = HMMTrainer()
hmm_trainer.train(X)
hmm_models.append((hmm_trainer, label))
hmm_trainer = None
while True:
inp_file=audio_test.main_a()
# Test files
input_files = [
inp_file
]
print input_files
# Classify input data
for input_file in input_files:
# Read input file
sampling_freq, audio = wavfile.read(input_file)
print sampling_freq
# Extract MFCC features
mfcc_features = mfcc(audio, sampling_freq)
# Define variables
max_score = None
output_label = None
# Iterate through all HMM models and pick
# the one with the highest score
for item in hmm_models:
hmm_model, label = item
score = hmm_model.get_score(mfcc_features)
if score > max_score:
max_score = score
output_label = label
# Print the output
if max_score>0:
print "\nTrue:", input_file[input_file.find('/')+1:input_file.rfind('/')]
print "Predicted:", output_label
else:
print "Unidentified Voice, can be", output_label
print "Max Score:", max_score