-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseating100Parrel.py
80 lines (52 loc) · 1.87 KB
/
seating100Parrel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import pandas as pd
import numpy as np
from copy import deepcopy
import time
from joblib import Parallel, delayed
import multiprocessing
import gc
df=pd.read_csv('Sparse100.csv')
df['judge1dissent'] = pd.Series(np.zeros(df.shape[0]), index=df.index)
caseList=pd.unique(df['caseid'])
caseList=caseList[pd.notnull(caseList)].tolist()
Length=len(caseList)
print df.shape
print Length
def get_year(datetime):
if pd.isnull(datetime):
return datetime
else:
return datetime[-4:]
def for_seating(caseLIST,st,end):
if end>Length:
end=Length
print st,end
newframe=pd.DataFrame()
for case in caseLIST[st:end]:
temper=np.where(df.caseid==case)
temper=(temper[0]).tolist()
for i in range(len(temper)):
df.loc[temper[i],'judge2code']=df.ix[temper[i-1]]['judgeidentificationnumber']
#df.loc[temper[i],'judge2dissent']=df.ix[temper[i-1]]['Dissenting1']
#newframe=newframe.append(df.ix[temper[i]])
if df.ix[temper[0]]['Dissenting1']!=0:
a=df.loc[temper[0],'Dissenting1']
for i in range(len(temper)):
if a==df.loc[temper[i],'j']:
df.loc[temper[i],'judge1dissent']=1
df.loc[temper[i-2],'judge2dissent']=1
for i in range(len(temper)):
newframe=newframe.append(df.ix[temper[i]])
filename="seatingoutput/seating%i.csv"%(st)
newframe.date=newframe.date.apply(get_year)
newframe.to_csv(filename)
return newframe
num_cores = multiprocessing.cpu_count()
print "parallel jobs started"
numarray=[]
i=0
while i<Length:
numarray.append(i)
i=i+1000
print numarray
jobs=Parallel(n_jobs=num_cores)(delayed(for_seating)(caseList,a,a+1000) for a in numarray)