-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathseating100.py
executable file
·54 lines (22 loc) · 945 Bytes
/
seating100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pandas as pd
import numpy as np
from copy import deepcopy
df=pd.read_csv('BloombergVOTELEVEL_Touse.csv',nrows=9)
caseList=pd.unique(df['caseid'])
caseList=caseList[pd.notnull(caseList)].tolist()
caseColumns=df.columns.tolist()
keep_col=['caseid','judgeidentificationnumber','Dissenting1']
for i in caseColumns:
if (i in keep_col):
caseColumns.remove(i)
df.drop(labels=caseColumns,axis=1,inplace=True)
df['judge2code'] = pd.Series(np.zeros(df.shape[0]), index=df.index)
df['judge2dissent'] = pd.Series(np.zeros(df.shape[0]), index=df.index)
print df.shape
for case in caseList:
temper=np.where(df.caseid==case)
temper=(temper[0]).tolist()
for i in range(len(temper)):
df.loc[temper[i],'judge2code']=df.ix[temper[i-1]]['judgeidentificationnumber']
df.loc[temper[i],'judge2dissent']=df.ix[temper[i-1]]['Dissenting1']
df.to_csv('seating100.csv')