-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
160 lines (127 loc) · 4.3 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
from helpers import *
def process_song_file(cur, filepath):
"""
This function is responsible for processing song file as it loads the json data into dataframe
then insert the data into the database.
Arguments:
cur: the cursor object.
filepath: song data file path.
Returns:
None
"""
# open song file
df = pd.read_json(filepath, lines=True)
# insert song record
song_data = df[["song_id", "title", "artist_id", "year", "duration"]].values[0]
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[
[
"artist_id",
"artist_name",
"artist_location",
"artist_latitude",
"artist_longitude",
]
].values[0]
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""
This function is responsible for processing log file as it loads the json data into dataframe
then insert the data into the database.
Arguments:
cur: the cursor object.
filepath: log data file path.
Returns:
None
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df.page == "NextSong"]
# convert timestamp column to datetime
t = pd.to_datetime(df["ts"], unit="ms")
# insert time data records
time_data = (
t,
t.dt.hour.values,
t.dt.day.values,
t.dt.isocalendar().week.values,
t.dt.month.values,
t.dt.year.values,
t.dt.weekday.values,
)
column_labels = ("start_time", "hour", "day", "week", "month", "year", "weekday")
time_df = pd.DataFrame(dict(zip(column_labels, time_data)))
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[["userId", "firstName", "lastName", "gender", "level"]]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
df["ts"] = pd.to_datetime(df["ts"], unit="ms")
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (
row.ts,
row.userId,
row.level,
songid,
artistid,
row.sessionId,
row.location,
row.userAgent,
)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""
Description: This function is responsible for listing the files in a directory,
and then executing the ingest process for each file according to the function
that performs the transformation to save it to the database.
Arguments:
cur: the cursor object.
conn: connection to the database.
filepath: log data or song data file path.
func: function that transforms the data and inserts it into the database.
Returns:
None
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root, "*.json"))
for f in files:
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print("{} files found in {}".format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print("{}/{} files processed.".format(i, num_files))
def main():
host, _, user, password = get_db_configs("db_config.yml")
conn = psycopg2.connect(
f"host={host} dbname=sparkifydb user={user} password={password}"
)
cur = conn.cursor()
process_data(cur, conn, filepath="data/song_data", func=process_song_file)
process_data(cur, conn, filepath="data/log_data", func=process_log_file)
conn.close()
if __name__ == "__main__":
main()