-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsvm.py
69 lines (58 loc) · 2.44 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import matplotlib.pyplot as plt
import sklearn
import numpy as np
import statistics as st
import pandas as pd
from sklearn.model_selection import train_test_split,ShuffleSplit,learning_curve
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report,accuracy_score,f1_score
import pickle
data = pd.read_csv("data/four.csv")
w = len(data.columns.values.tolist())-2
for i in range(2,w+1):
mean = st.mean(data.iloc[:, i].values.tolist())
std = st.stdev(data.iloc[:,i].values.tolist())
data.iloc[:,i] = (data.iloc[:,i] - mean) / std
X = data.loc[:,'Gender':'Interviews']
y = data.loc[:,'Company Placed']
# X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.1)
# svclassifier=SVC(kernel='rbf',gamma=0.001,C=100)
# svclassifier.fit(X_train,y_train)
#
#
# y_pred=svclassifier.predict(X_test)
# print(accuracy_score(y_test,y_pred))
#pickle.dump(svclassifier,open('prediction-svm.sav','wb'))
def plot_learning_curve(estimator, title, X, y, cv,
n_jobs, train_sizes):
plt.figure()
plt.title(title)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
title="Learning Curve(SVM)"
#title="Learning Curve(Logistic Regression)"
cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)
estimator=SVC(kernel='rbf',gamma=0.001,C=100)
#estimator=LogisticRegression()
train_size=np.linspace(.1, 1.0, 5)
plot_learning_curve(estimator, title, X, y, cv, 4, train_size)
plt.show()