Skip to content

Commit 66ee31f

Browse files
Merge pull request #121 from antoinedemathelin/master
fix: new sklearn version compatibility
2 parents 5ce9f04 + 4befc04 commit 66ee31f

File tree

4 files changed

+14
-11
lines changed

4 files changed

+14
-11
lines changed

adapt/instance_based/_iwc.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@ def fit_weights(self, Xs, Xt, warm_start=False, **kwargs):
124124

125125
if (not warm_start) or (not hasattr(self, "classifier_")):
126126
if self.classifier is None:
127-
self.classifier_ = LogisticRegression(penalty="none")
127+
self.classifier_ = LogisticRegression()
128128
else:
129129
self.classifier_ = check_estimator(self.classifier,
130130
copy=True,

adapt/instance_based/_tradaboost.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -320,7 +320,10 @@ def _boost(self, iboost, Xs, ys, Xt, yt,
320320

321321
if not isinstance(self, TrAdaBoostR2):
322322
if isinstance(estimator, BaseEstimator):
323-
ohe = OneHotEncoder(sparse=False)
323+
try:
324+
ohe = OneHotEncoder(sparse=False)
325+
except:
326+
ohe = OneHotEncoder(sparse_output=False)
324327
ohe.fit(y.reshape(-1, 1))
325328
ys = ohe.transform(ys)
326329
yt = ohe.transform(yt)

tests/test_regular.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ def test_setup():
5656
lr.fit(Xs, ys_reg)
5757
assert np.abs(lr.coef_[0][0] - 10) < 1
5858

59-
lr = LogisticRegression(penalty='none', solver='lbfgs')
59+
lr = LogisticRegression(penalty=None, solver='lbfgs')
6060
lr.fit(Xs, ys_classif)
6161
assert (lr.predict(Xt) == yt_classif.ravel()).sum() < 70
6262

@@ -116,7 +116,7 @@ def test_regularlr_error():
116116

117117
def test_regularlc_fit():
118118
np.random.seed(0)
119-
lr = LogisticRegression(penalty='none', solver='lbfgs')
119+
lr = LogisticRegression(penalty=None, solver='lbfgs')
120120
lr.fit(Xs, ys_classif)
121121
model = RegularTransferLC(lr, lambda_=0)
122122
model.fit(Xt, yt_classif)
@@ -139,7 +139,7 @@ def test_regularlc_multiclass():
139139
y = np.zeros(len(X))
140140
y[X[:, :2].sum(1)<0] = 1
141141
y[X[:, 3:].sum(1)>0] = 2
142-
lr = LogisticRegression(penalty='none', solver='lbfgs')
142+
lr = LogisticRegression(penalty=None, solver='lbfgs')
143143
lr.fit(X, y)
144144
model = RegularTransferLC(lr, lambda_=1.)
145145
model.fit(X, y)
@@ -193,7 +193,7 @@ def test_clone():
193193
new_model.predict(Xs);
194194
assert model is not new_model
195195

196-
lr = LogisticRegression(penalty='none', solver='lbfgs')
196+
lr = LogisticRegression(penalty=None, solver='lbfgs')
197197
lr.fit(Xs, ys)
198198
model = RegularTransferLC(lr, lambda_=1.)
199199
model.fit(Xs, ys)

tests/test_tradaboost.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@
3636

3737
def test_tradaboost_fit():
3838
np.random.seed(0)
39-
model = TrAdaBoost(LogisticRegression(penalty='none',
39+
model = TrAdaBoost(LogisticRegression(penalty=None,
4040
solver='lbfgs'),
4141
n_estimators=20)
4242
model.fit(Xs, ys_classif, Xt=Xt[:10], yt=yt_classif[:10])
@@ -111,7 +111,7 @@ def test_twostagetradaboostr2_fit():
111111

112112
def test_tradaboost_deepcopy():
113113
np.random.seed(0)
114-
model = TrAdaBoost(LogisticRegression(penalty='none',
114+
model = TrAdaBoost(LogisticRegression(penalty=None,
115115
solver='lbfgs'),
116116
n_estimators=20)
117117
model.fit(Xs, ys_classif, Xt=Xt[:10], yt=yt_classif[:10])
@@ -124,7 +124,7 @@ def test_tradaboost_multiclass():
124124
np.random.seed(0)
125125
X = np.random.randn(10, 3)
126126
y = np.random.choice(3, 10)
127-
model = TrAdaBoost(LogisticRegression(penalty='none',
127+
model = TrAdaBoost(LogisticRegression(penalty=None,
128128
solver='lbfgs'), Xt=X, yt=y,
129129
n_estimators=20)
130130
model.fit(X, y)
@@ -177,13 +177,13 @@ def test_tradaboost_above_05():
177177

178178
def test_tradaboost_lr():
179179
np.random.seed(0)
180-
model = TrAdaBoost(LogisticRegression(penalty='none'),
180+
model = TrAdaBoost(LogisticRegression(penalty=None),
181181
Xt=Xt[:10], yt=yt_classif[:10],
182182
n_estimators=20, lr=.1)
183183
model.fit(Xs, ys_classif)
184184
err1 = model.estimator_errors_
185185

186-
model = TrAdaBoost(LogisticRegression(penalty='none'),
186+
model = TrAdaBoost(LogisticRegression(penalty=None),
187187
Xt=Xt[:10], yt=yt_classif[:10],
188188
n_estimators=20, lr=2.)
189189
model.fit(Xs, ys_classif)

0 commit comments

Comments
 (0)