-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample64.py
61 lines (39 loc) · 1.37 KB
/
example64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
from benchmark import benchmark
import brute
import greedy
import matplotlib.pyplot as plt
plt.style.use('ggplot')
alpha = 0.5
def gg(x,y):
return 1/(np.abs(np.subtract.outer(y,alpha*x))+1)
def keff(n, d, size):
roots = np.roots([d-1, 0, d * n, -size])
roots = roots[np.imag(roots) == 0]
roots = roots[roots > 0]
return np.real(roots[0])
dataB = []
dataG = []
J = 1.0
for d in range(2,5):
si = np.array(np.meshgrid(*[[0,1] for _ in range(d)], indexing='ij'))
l = np.tensordot(2**np.arange(d), si, axes=((0,),(0,)))
xi = l * (2 / 2**d) - 1
x = gg(xi, xi)
dt, b = benchmark(brute.findBest, x, 1e-8)
dataB.append([d,keff(2,2*d,sum([v.size for v in b[2]])),sum([v.size for v in b[2]]) * 1./x.size, dt])
dt, g = benchmark(greedy.findBest, x, 1e-8)
dataG.append([d,keff(2,2*d,sum([v.size for v in g])),sum([v.size for v in g]) * 1./x.size, dt])
print(d, dataB[-1][1], dataG[-1][1])
for d in range(5,8):
si = np.array(np.meshgrid(*[[0,1] for _ in range(d)], indexing='ij'))
l = np.tensordot(2**np.arange(d), si, axes=((0,),(0,)))
xi = l * (2 / 2**d) - 1
x = gg(xi, xi)
dt, g = benchmark(greedy.findBest, x, 1e-8)
dataG.append([d,keff(2,2*d,sum([v.size for v in g])),sum([v.size for v in g]) * 1./x.size, dt])
print(d, dataG[-1][1])
print(dataB)
print(dataG)
np.savetxt('../Data/e64Decomp1b.dat', dataB)
np.savetxt('../Data/e64Decomp1g.dat', dataG)