-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscvh.py
336 lines (277 loc) · 13.5 KB
/
scvh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
This is a python implementation of the interpolation and thermodynamics routines used in the SCVH
equation of state by Saumon, D., Chabrier, G., and Van Horn, H.M.. The tables include the full
documentation of the tables.
See the following references for more information on the SCVH EOS:
Chabrier, G. 1990, J. Phys. (Paris) 51, 1607.
Saumon, D. and Chabrier, G. 1991, Phys. Rev. A 44, 5122.
Saumon, D. and Chabrier, G. 1992, Phys. Rev. A 46, 2084.
Saumon, D., Chabrier, G., and Van Horn, H.M. 1994, Ap. J. Supp., in press.
"""
import numpy as np
from scipy.interpolate import interp1d
from scipy.interpolate import RectBivariateSpline
import sys
sys.path.append('../')
from sourceClass import *
def readTables(fname):
"""
This function reads in any of the SCVH tables (other than the critical line table),
given the file name as an argument. It returns the table, the grid values of
log T (Temperature in K), and the grid values of log P (Pressure in erg/cm^3).
Missing entries are filled with NaN. The structure of the tables guarantees that
these entries are always grouped at the high-pressure end, and that for any
(T,P1) giving NaN, (T,P2>P1) gives NaN too.
The tables themselves are indexed first by T, then by P, and finally by the quantities
of interest. For hydrogen tables, this last column is given as:
0 - Number fraction of H2
1 - Number fraction of H
2 - Log(Density (g/cm^3))
3 - Log(Entropy (erg/K/g))
4 - Log(Internal energy (erg/g))
5 - dLogRho/dLogT|P
6 - dLogRho/dLogP|T
7 - dLogS/dLogT|P
8 - dLogS/dLogP|T
9 - dLogT/dLogP|S
For helium, they are:
0 - Number fraction of He
1 - Number fraction of He+ ions
2 - Log(Density (g/cm^3))
3 - Log(Entropy (erg/K/g))
4 - Log(Internal energy (erg/g))
5 - dLogRho/dLogT|P
6 - dLogRho/dLogP|T
7 - dLogS/dLogT|P
8 - dLogS/dLogP|T
9 - dLogT/dLogP|S
"""
logTvals = [] # Temperature gridpoints
logPvals = [] # Pressure gridpoints
hTable = [] # Hydrogen table
maxLen = 0
fi = open(fname)
for line in fi:
s = line.rstrip('\n').rstrip('\r').split(' ')
s = [i for i in s if i != '']
if len(s) == 2: # Means the start of a new temperature
logTvals.append(float(s[0]))
hTable.append([])
else:
hTable[-1].append(map(float, s))
if len(hTable[-1]) > maxLen:
maxLen = len(hTable[-1])
logPvals = [hTable[-1][i][0] for i in range(len(hTable[-1]))]
# The tables always start at the same pressure, and step in the same increments,
# but the endpoint is not uniform. For efficiency we are going to pad the table such
# that it is rectangular.
for i in range(len(hTable)):
for j in range(maxLen - len(hTable[i])):
hTable[i].append([np.nan for k in range(len(hTable[0][0]))])
# Turn it all into NumPy arrays:
logTvals = np.array(logTvals)
logPvals = np.array(logPvals)
hTable = np.array(hTable)
hTable = hTable[..., 1:] # Remove pressure values from table entries
return hTable, logTvals, logPvals
def makeSources(dirname='SourceTables/SCVH/'):
# Read in the smoothed hydrogen EOS table and construct the source
hTable, logTvals, logPvals = readTables(dirname + 'H_TAB_I.DAT')
outNames = ['X(H2)', 'X(H)', 'logRho', 'logS', 'logE', 'dLogRho/dLogT|P',
'dLogRho/dLogP|T', 'dLogS/dLogT|P', 'dLogS/dLogP|T', 'dLogT/dLogP|S']
smoothedH = sourceFromTables([logTvals, logPvals], ['logT', 'logP'],
outNames, hTable, kind='cubic')
print (hTable[:,:,-1]+hTable[:,:,-2]/hTable[:,:,-3])[::5,::5]
# Read in the helium EOS table and construct the source
heTable, logTvals, logPvals = readTables(dirname + 'HE_TAB_I.DAT')
outNames = ['X(He)', 'X(He+)', 'logRho', 'logS', 'logE', 'dLogRho/dLogT|P',
'dLogRho/dLogP|T', 'dLogS/dLogT|P', 'dLogS/dLogP|T', 'dLogT/dLogP|S']
He = sourceFromTables([logTvals, logPvals], ['logT', 'logP'], outNames, heTable, kind='cubic')
# Read in the hydrogen phase transition data
rhoCrit = np.transpose(np.loadtxt(dirname + 'RHO_CRIT.DAT'))
# Read in the Phase 1 transition data
hTable1, logTvals1, logPvals1 = readTables(dirname + 'H_TAB_P1.DAT')
outNames = ['X(H2)', 'X(H)', 'logRho', 'logS', 'logE', 'dLogRho/dLogT|P',
'dLogRho/dLogP|T', 'dLogS/dLogT|P', 'dLogS/dLogP|T', 'dLogT/dLogP|S']
# Read in the Phase 2 transition data
hTable2, logTvals2, logPvals2 = readTables(dirname + 'H_TAB_P2.DAT')
outNames = ['X(H2)', 'X(H)', 'logRho', 'logS', 'logE', 'dLogRho/dLogT|P',
'dLogRho/dLogP|T', 'dLogS/dLogT|P', 'dLogS/dLogP|T', 'dLogT/dLogP|S']
# Create the binary masks for the phase transition
# Create interpolator for the critical line
criticalLineInterpolator = interp1d(
rhoCrit[0], rhoCrit[1], kind='linear', bounds_error=False, fill_value=np.nan)
# Interpolate the critical line in T
critP = criticalLineInterpolator(logTvals1)
# Hard-coded value from the original code
critP[logTvals1 > 4.18] = 11.75
# Zero-out the mask where it falls above the critical pressure
binaryMask1 = np.ones((len(logTvals1), len(logPvals1)))
for i in range(len(logTvals1)):
binaryMask1[i, logPvals1 > critP[i]] = 0
# Zero-out the mask where it falls below the critical pressure
binaryMask2 = np.ones((len(logTvals2), len(logPvals2)))
for i in range(len(logTvals2)):
binaryMask2[i, logPvals2 > critP[i]] = 0
# Create the transition sources
HP1 = sourceFromTables([logTvals1, logPvals1], ['logT', 'logP'], outNames,
hTable1, kind='cubic', binaryMask=binaryMask1, smoothingDist=7)
HP2 = sourceFromTables([logTvals2, logPvals2], ['logT', 'logP'], outNames,
hTable2, kind='cubic', binaryMask=binaryMask2, smoothingDist=7)
# Merge transition sources with smoothed source, weighting smoothed source
# less so it only dominates outside of the transition region
HP = mergeSources([HP1, HP2, smoothedH], HP1.inNames, HP1.outNames, weights=[1., 1., 0.1])
# Now we create the mixed source as functions which perform the appropriate interpoaltion in Y.
# At these temperatures we can neglect Z (we let X -> X+Z, and leave Y unchanged). The reason we
# put it into H rather than He is that this is what is done in the 1995 ApJ paper in which this
# code was presented.
kB = 1.380650424e-16 # Boltzmann Constant (erg/K)
mH = 1.67357e-24 # Proton mass (g)
mHe = 6.646442e-24 # Helium mass (g)
def Smix(xHe, xHeP, xH, xH2, y):
# The various X's are imprecise, leading to the summation rules on either He/He+
# or H/H2 being violated (i.e. composition fractions summing above unity).
# This is not a big issue with linear interpolation, where the
# maximum error matches that in the table (~1e-7), but is significant once
# the bicubic interpolation described in the SCVH paper is used, as this
# does not automatically conserve sums. The maximum error was estimated numerically at
# 10%. To use these concentrations in mixing entropy calculations we need to impose
# these rules. Suppose we have two variables, A and B, and we wish to subject them to the
# condition A+B<=1. If the violation of this rule is not large, we can impose the
# constraint by dividing each of A and B by some function f(A+B) obeying f(x>1)>x,
# f(x>1) ~ x, and f(x<1) ~ 1, with f both continuous and differentiable.
# A good function for these purposes is (1+x^n)^(1/n) fits the bill nicely, with
# increasing sharpness as n increases. We pick n=4 arbitrarily here.
xHe /= (1 + (xHe + xHeP)**4)**0.25
xHeP /= (1 + (xHe + xHeP)**4)**0.25
xH /= (1 + (xH + xH2)**4)**0.25
xH2 /= (1 + (xH + xH2)**4)**0.25
# Compute the electron fractions
xHelec = (1 - xH2 - xH) / 2.
xHeElec = (2 - 2 * xHe - xHeP) / 3.
# Compute beta, gamma, and delta from Eq. 54,55,56 in the SCVH paper
# Note that delta has 2/3 not 3/2. This is per a correction from Didier Saumon.
beta = (mH / mHe) * (y / (1 - y))
gamma = (3. / 2) * (1 + xH + 3 * xH2) / (1 + 2 * xHe + xHeP)
delta = beta * gamma * (2. / 3) * (2 - 2 * xHe - xHeP) / (1 - xH - xH2)
# Compute mixing entropy
ld = np.log(1 + delta)
ldi = np.log(1 + 1 / delta)
lbg = np.log(1 + beta * gamma)
lbgi = np.log(1 + 1 / (beta * gamma))
Smix = kB * ((1 - y) / mH) * (2 / (1 + xH + 3 * xH2)) * \
(lbg - xHelec * ld + beta * gamma * (lbgi - xHeElec * ldi))
return Smix
def dSmixd(points):
# Points is a numpy array of shape (N,3), with the three columns being (Y, logT, logP).
y = points[:, 0]
# Compute the H and He outputs
outH = HP.data(points[:, 1:])
outHe = He.data(points[:, 1:])
# Compute Smix
sm = Smix(outHe[:, 0], outHe[:, 1], outH[:, 1], outH[:, 0], y)
# Compute the H and He outputs shifted in temperature
dlogT = np.zeros(points.shape)
dlogT[:, 1] = -1e-10
doutH = HP.data((points + dlogT)[:, 1:])
doutHe = He.data((points + dlogT)[:, 1:])
doutHneg = HP.data((points - dlogT)[:, 1:])
doutHeneg = He.data((points - dlogT)[:, 1:])
# Compute Smix at logT+-dlogT
psmdt = Smix(doutHe[:, 0], doutHe[:, 1], doutH[:, 1], doutH[:, 0], y)
msmdt = Smix(doutHeneg[:, 0], doutHeneg[:, 1], doutHneg[:, 1], doutHneg[:, 0], y)
# Compute the H and He outputs shifted in pressure
dlogP = np.zeros(points.shape)
dlogP[:, 2] = -1e-10
doutH = HP.data((points + dlogP)[:, 1:])
doutHe = He.data((points + dlogP)[:, 1:])
doutHneg = HP.data((points - dlogP)[:, 1:])
doutHeneg = He.data((points - dlogP)[:, 1:])
# Compute Smix at logP+dlogP
psmdp = Smix(doutHe[:, 0], doutHe[:, 1], doutH[:, 1], doutH[:, 0], y)
msmdp = Smix(doutHeneg[:, 0], doutHeneg[:, 1], doutHneg[:, 1], doutHneg[:, 0], y)
# Compute derivative
dsmdp = (psmdp - msmdp) / (2*dlogP[:, 2]) / sm
# Compute derivative
dsmdt = (psmdt - msmdt) / (2*dlogT[:, 1]) / sm
return sm, dsmdt, dsmdp
def data(points):
# Points is a numpy array of shape (N,3), with the three columns being (Y, logT, logP).
y = points[:, 0]
# Compute the H and He outputs
outH = HP.data(points[:, 1:])
outHe = He.data(points[:, 1:])
# Compute mixing entropy and derivatives
sm, dsmdt, dsmdp = dSmixd(points)
print sm[::30]
out = np.zeros((len(points), 12)) # Create combined output
out[:, 0] = (1 - y) * outH[:, 1]
out[:, 1] = (1 - y) * outH[:, 0]
out[:, 2] = y * outHe[:, 0]
out[:, 3] = y * outHe[:, 1]
out[:, 4] = -np.log10((1 - y) * 10**(-outH[:, 2]) + y * 10**(-outHe[:, 2])) # Interpolate logRho
out[:, 5] = np.log10((1 - y) * 10**outH[:, 3] + y * 10**outHe[:, 3] + sm) # Interpolate logS
out[:, 6] = np.log10((1 - y) * 10**(outH[:, 4]) + y * 10**(outHe[:, 4])) # Interpolate logE
out[:, 7] = (10**out[:, 4]) * ((1 - y) * outH[:, 5] * 10**(-outH[:, 2]) +
y * outHe[:, 5] * 10**(-outHe[:, 2])) # Interpolate dLogRho/dLogT
out[:, 8] = (10**out[:, 4]) * ((1 - y) * outH[:, 6] * 10**(-outH[:, 2]) +
y * outHe[:, 6] * 10**(-outHe[:, 2])) # Interpolate dLogRho/dLogP
# The next three formulas are corrected (relative to the paper)
# per communication with Didier Saumon.
out[:, 9] = 10**(-out[:, 5]) * ((1 - y) * 10**(outH[:, 3]) * outH[:, 7] + y * 10 **
(outHe[:, 3]) * outHe[:, 7] + sm * dsmdt) # Interpolate dLogS/dLogT
out[:, 10] = 10**(-out[:, 5]) * ((1 - y) * 10**(outH[:, 3]) * outH[:, 8] + y * 10 **
(outHe[:, 3]) * outHe[:, 8] + sm * dsmdp) # Interpolate dLogS/dLogP
# Below we compute dLogS/dLogP (for computing the adiabatic thermal gradient) this way rather
# than as in the above two lines because this produces correct interpolation for dlnT/dlnP|S.
# Computing it as above compounds interpolation error and leads to non-vanishing error in the adiabatic
# gradient as we approach either Y=0 or Y=1 (i.e. inconsistency with the edge cases).
# Unfortunately the system as described in SCVH is not consistent, so we cannot maintain the
# relationship Sp/St = -dlnT/dlnP|S. Rather, we attempt to keep each quantity as consistent at the
# boundaries of Y as possible.
adDlogSDlogP = -10**(-out[:, 5]) * ((1 - y) * 10**(outH[:, 3]) * outH[:, 7]*outH[:, 9] + y * 10 **
(outHe[:, 3]) * outHe[:, 7]*outHe[:,9] + sm * dsmdp) # Interpolate dLogS/dLogP
out[:, 11] = -adDlogSDlogP / out[:, 9]
return out
def contains(points):
return He.contains(points[:, 1:])
outNames = ['X(H)', 'X(H2)', 'X(He)', 'X(He+)', 'logRho', 'logS', 'logE', 'dLogRho/dLogT|P',
'dLogRho/dLogP|T', 'dLogS/dLogT|P', 'dLogS/dLogP|T', 'dLogT/dLogP|S']
# The contains function we take from He, as it has the smaller range (than H) due to the lack of a pressure phase transition (we get more
# data for H because of the detail around the transition, which occurs
# near an edge). Likewise for the smoothMask function.
HHe = source(['Y', 'logT', 'logP'], outNames, contains, He.smoothMask, data)
return HHe, HP, HP1, HP1, smoothedH, He
def test():
HHe, HP, HP1, HP1, smoothedH, He = makeSources()
s1 = HHe
s2 = He
import matplotlib.pyplot as plt
y = 1-1e-15
t = np.linspace(2., 8., num=200)
p = np.linspace(3., 20., num=200)
t, p = np.meshgrid(t, p)
t = t.flatten()
p = p.flatten()
points1 = np.transpose((y * np.ones(len(t)), t, p))
points2 = np.transpose((t, p))
out1 = s1.data(points1)
out2 = s2.data(points2)
out = out1[:,-2]
outP = out2[:,-2]
cont = s1.contains(points1)
out[cont == 0.] = np.nan
outP[cont == 0.] = np.nan
cont = np.reshape(cont, (200, 200))
out = np.reshape(out, (200, 200))
outP = np.reshape(outP, (200, 200))
plt.subplot(131)
plt.imshow(out, origin='lower', extent=[2.1, 7.06, 4, 19])
plt.colorbar()
plt.subplot(132)
plt.imshow(outP, origin='lower', extent=[2.1, 7.06, 4, 19])
plt.colorbar()
plt.subplot(133)
plt.imshow(out - outP, origin='lower', extent=[2.1, 7.06, 4, 19])
plt.colorbar()
plt.show()