forked from Thakar-Lab/BONITA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpathway_analysis_setup.py
505 lines (471 loc) · 19.1 KB
/
pathway_analysis_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#import python packages
import networkx as nx
import operator
from sets import Set
import scipy.stats as stat
import requests
import argparse as argparse
from scipy.stats import variation
import numpy as np
import csv as csv
import pickle
from bioservices import KEGG
import urllib2
from bs4 import BeautifulSoup
import itertools as it
# import other pieces of our software
import networkConstructor as nc
from utils import readFpkmData
import string
def xstr(s):
"""Handle NoneType in strings"""
if s is None:
return("Unknown")
return str(s)
def makeSIF(pathway, keggObject):
print("Pathway: ")
print(pathway.encode('utf-8'))
activationRelations = ["activation", "binding/association", "phosphorylation", "indirect effect", "dissociation"] #Change
inhibitionRelations = ["inhibition", "dephosphorylation", "dissociation", "ubiquitination"] #Change
try:
res = keggObject.parse_kgml_pathway(pathway) #Change
except:
print('Failed graph download: '+ str(pathway))
return []
sif = []
#print(res)
#res2 = {k1.encode("utf-8"):[{k.encode("utf-8"): v.encode("utf-8") for k,v in entry.iteritems()} for entry in v1] for k1,v1 in res.iteritems() }
#print(res2)
for rel in res['relations']:
# types can be PPrel (protein-protein interaction only)
#print(rel)
if rel['name'].encode("utf-8") in inhibitionRelations:
Id1 = rel['entry1']
Id2 = rel['entry2']
type1 = res['entries'][[x['id'] for x in res['entries']].index(Id1)]['type']
type2 = res['entries'][[x['id'] for x in res['entries']].index(Id2)]['type']
if type1!='gene' or type2!='gene':
continue
name1 = xstr(res['entries'][[x['id'] for x in res['entries']].index(Id1)]['gene_names']).split(",")[0]
name2 = xstr(res['entries'][[x['id'] for x in res['entries']].index(Id2)]['gene_names']).split(",")[0]
sif.append([name1, -1, name2])
else:
Id1 = rel['entry1']
Id2 = rel['entry2']
type1 = res['entries'][[x['id'] for x in res['entries']].index(Id1)]['type']
type2 = res['entries'][[x['id'] for x in res['entries']].index(Id2)]['type']
#print(type1)
#print(type2)
#if type1.encode("utf-8")!='gene' or type2.encode("utf-8")!='gene':
# continue
print(res['entries'])[[x['id'] for x in res['entries']].index(Id1)]
print(res['entries'][[x['id'] for x in res['entries']].index(Id1)]['gene_names'])
name1 = xstr(res['entries'][[x['id'] for x in res['entries']].index(Id1)]['gene_names']).split(",")[0]
name2 = xstr(res['entries'][[x['id'] for x in res['entries']].index(Id2)]['gene_names']).split(",")[0]
sif.append([str.upper(name1).replace('.',''), 1, str.upper(name2).replace('.',"")])
sif = np.array([np.array(sif1) for sif1 in sif])
#print(sif)
return sif
def sif_to_digraph(pathwayGenes, sif):
node1, node2, edges = set(sif[0:,0]), set(sif[0:,2]), sif[:, [0,2]]
nodes=node1.union(node2)
del node1, node2
nodes=list(nodes)
G=nx.DiGraph()
G.add_nodes_from(nodes)
for edge in sif:
node1 = str(edge[0])
node2 = str(edge[2])
if (node1 == node2):
#don't add self edges
continue
elif (node1 not in pathwayGenes) or (node2 not in pathwayGenes):
#don't add nodes that are not in the set of filtered genes
continue
elif (node1 == node2):
#don't add self-loops
continue
else:
G.add_edge(str(edge[0]), str(edge[2]), signal=int(edge[1]))
#graph post-processing
#remove singletons/isolates
G.remove_nodes_from(list(nx.isolates(G)))
#To do: remove complexes, remove dependences of a node on complexes that include that node (which is a form of self-loop)
return(G)
def sif_to_digraph2(sif):
node1, node2, edges = set(sif[0:,0]), set(sif[0:,2]), sif[:, [0,2]]
nodes=node1.union(node2)
del node1, node2
nodes=list(nodes)
G=nx.DiGraph()
G.add_nodes_from(nodes)
for edge in sif:
node1 = str(edge[0])
node2 = str(edge[2])
if (node1 == node2):
#don't add self edges
continue
elif (node1 == node2):
#don't add self-loops
continue
else:
G.add_edge(str(edge[0]), str(edge[2]), signal=int(edge[1]))
#graph post-processing
#remove singletons/isolates
G.remove_nodes_from(list(nx.isolates(G)))
#To do: remove complexes, remove dependences of a node on complexes that include that node (which is a form of self-loop)
return(G)
# read in file with pathway genes and names
def read_gmt(filename):
gmt_dict={}
inputfile = open(filename, 'r')
lines = inputfile.readlines()
for line in lines:
newline=line.split('\t')
gmt_dict[newline[0]]=Set(newline[2:])
return gmt_dict
# find list of pathways with at least four genes found in data
def find_overlaps(filename,geneDict):
overlapsets=[] # list of pathways with enough overlaps
genes=Set(geneDict.keys())
keggDict=read_gmt(filename)
for key in keggDict.keys():
if len(genes.intersection(keggDict[key]))>4: # ensure there are at least 4 nodes in both pathway and detected genes
overlapsets.append(key)
print(key)
print(len(genes.intersection(keggDict[key])))
return overlapsets
# download and prepare graph for finding the rules
def retrieveGraph(name,aliasDict,dict1,dict2, cvDict, geneDict):
print(name)
# use KEGG API to figure out what the pathway code is
namelist=name.split('_')
namelist.pop(0)
requester='http://rest.kegg.jp/find/pathway/'+namelist.pop(0)
for item in namelist:
requester=requester+'+'+item
r=requests.get(requester)
genes=Set(geneDict.keys())
lines=r.text
# parse file that comes from KEGG
if len(lines.split('\n')[0].split(':'))>1:
code=lines.split('\n')[0].split(':')[1][3:8] # KEGG number of overlapped pathway
graph=nx.DiGraph()
# download and integrate human and generic versions of pathway
coder=str('ko'+code)
nc.uploadKEGGcodes([coder], graph, dict2)
coder=str('hsa'+code)
nc.uploadKEGGcodes_hsa([coder], graph,dict1, dict2)
# check to see if there is a connected component, simplify graph and print if so
if len(list(nx.connected_component_subgraphs(graph.to_undirected() )))>0:
#nx.write_graphml(graph,coder+'_before.graphml')
graph=simplifyNetworkpathwayAnalysis(graph, cvDict)
nx.write_graphml(graph,coder+'.graphml')
if len(genes.intersection(graph.nodes()))>1:
nx.write_gpickle(graph,coder+'.gpickle')
print('nodes: ',str(len(graph.nodes())),', edges:',str(len(graph.edges())))
# save the removed nodes and omics data values for just those nodes in the particular pathway
pathwaySampleList=[{} for q in range(len(geneDict[list(graph.nodes())[0]]))]
for noder in graph.nodes():
for jn in range(len(pathwaySampleList)):
pathwaySampleList[jn][noder]=geneDict[noder][jn]
pickle.dump( pathwaySampleList, open( coder+"_sss.pickle", "wb" ) )
else:
print('not found:')
print(requester)
print(lines)
def find_pathways_organism(cvDict, preDefList = [],writeGraphml=True, organism="hsa"):
aliasDict, koDict, orgDict = {}, {}, {} # set up empty dictionaries for converting codes
nc.parseKEGGdict('inputData/ko00001.keg',aliasDict,koDict) # parse the dictionary of ko codes
try: # try to retrieve and parse the dictionary containing organism gene names to codes conversion
url=urllib2.urlopen('http://rest.kegg.jp/list/'+organism)
text=url.readlines()
# reads KEGG dictionary of identifiers between numbers and actual protein names and saves it to a python dictionary
for line in text:
line_split=line.split('\t')
k=line_split[0].split(':')[1]
nameline=line_split[1].split(';')
name=nameline[0]
if ',' in name:
nameline=name.split(',')
name=nameline[0]
for entry in range(1,len(nameline)):
aliasDict[nameline[entry].strip()]=name.upper()
orgDict[k]=name
except:
print('Could not get library: ' + organism )
k = KEGG() # read KEGG from bioservices
k.organism=organism
minOverlap=5
if len(preDefList) ==0:
pathwayList=list(k.pathwayIds)
else:
pathwayList= list(preDefList)
# set up a converter to retain only numbers from KEGG pathway codes
allChars=string.maketrans('','')
noDigits=allChars.translate(allChars, string.digits)
genes=set(cvDict.keys()) # find the list of genes included in dataset
for x in pathwayList:
x=x.replace("path:","")
code=str(x)
code= code.translate(allChars, noDigits) # eliminate org letters
coder=str('ko'+code) # add ko
graph=nx.DiGraph() # open a graph object
nc.uploadKEGGcodes([coder], graph, koDict) # get ko pathway
coder=str(organism+code) # set up with org letters
uploadKEGGcodes_org([coder], graph,orgDict, koDict, organism) # get org pathway
# check to see if there is a connected component, simplify graph and print if so
allNodes= set(graph.nodes())
test= len(allNodes.intersection(genes))
print("Pathway: ", x, " Overlap: ", test, " Edges: ", len(graph.edges()))
if len(list(nx.connected_component_subgraphs(graph.to_undirected() )))>0: # if there is more than a 1 node connected component, run BONITA
#nx.write_graphml(graph,coder+'_before.graphml')
if len(genes.intersection(graph.nodes()))> minOverlap: # if there are 5 genes shared
graph=simplifyNetworkpathwayAnalysis(graph, cvDict) # simplify graph to nodes in dataset
nx.write_graphml(graph,coder+'.graphml') # write graph out
nx.write_gpickle(graph,coder+'.gpickle') # write graph out
print('nodes: ',str(len(graph.nodes())),', edges:',str(len(graph.edges())))
print(graph.nodes())
if len(graph.nodes()) > 0:
# save the removed nodes and omics data values for just those nodes in the particular pathway
pathwaySampleList=[{} for q in range(len(geneDict[list(graph.nodes())[0]]))]
for noder in graph.nodes():
for jn in range(len(pathwaySampleList)):
pathwaySampleList[jn][noder]=geneDict[noder][jn]
pickle.dump( pathwaySampleList, open( coder+"_sss.pickle", "wb" ) )
# identify pathways and complete setup for simulation
def findPathwaysHuman(cvDict,gmtName, geneDict):
aliasDict, dict1, dict2={}, {}, {} # set up dicts for reading KEGG files
# read in kegg gene symbol dictionaries
nc.parseKEGGdicthsa('inputData/hsa00001.keg',aliasDict,dict1)
nc.parseKEGGdict('inputData/ko00001.keg',aliasDict,dict2)
namelist=find_overlaps(gmtName,cvDict) # find list of pathways with overlaps with the genes from omics data
print('num of overlap nodes: ' + str(len(namelist)))
for name in namelist:
retrieveGraph(name,aliasDict,dict1,dict2, cvDict, geneDict) # find and store gpickles for graphs found
# collapse unnecessary nodes for easier rule determination
def simplifyNetworkpathwayAnalysis(graph, ss):
#network simplification algorithm.
# # 1. remove self edges
# # 2. remove complexes and rewire components
# # 3. remove nodes with no input data
# # 4. remove dependence of nodes on complexes that include that node
# 1. remove self edges
for edge in graph.edges():
if edge[0]==edge[1]:
graph.remove_edge(edge[0],edge[1])
# 2. remove complexes and rewire components
removeNodeList= [x for x in graph.nodes() if '|||' in x]
for rm in removeNodeList:
for start in graph.predecessors(rm):
edge1=graph.get_edge_data(start,rm)['signal']
if edge1=='i':
for element in rm.split('|||'):
graph.add_edge(start,element,signal='i')
else:
for element in rm.split('|||'):
graph.add_edge(start,element,signal='a')
for finish in graph.successors(rm):
edge2=graph.get_edge_data(rm,finish)['signal']
if edge2=='i':
for element in rm.split('|||'):
graph.add_edge(element,finish,signal='i')
else:
for element in rm.split('|||'):
graph.add_edge(element,finish,signal='a')
graph.remove_node(rm)
# 3. remove nodes with no input data
removeNodeList= [x for x in graph.nodes() if not x in ss.keys()]
for rm in removeNodeList:
for start in graph.predecessors(rm):
for finish in graph.successors(rm):
edge1=graph.get_edge_data(start,rm)['signal']
edge2=graph.get_edge_data(rm,finish)['signal']
inhCount=0
if edge1=='i':
inhCount=inhCount+1
if edge2=='i':
inhCount=inhCount+1
if inhCount==1:
graph.add_edge(start,finish,signal='i')
else:
graph.add_edge(start,finish,signal='a')
graph.remove_node(rm)
# 4. remove dependence of nodes on complexes that include that node
for node in graph.nodes():
predlist=graph.predecessors(node)
for pred in predlist:
if '|||' in pred:
genes=pred.split('|||')
flag=True
for gene in genes:
if not gene in predlist:
flag=False
if flag:
graph.remove_edge(pred,node)
for edge in graph.edges():
if edge[0]==edge[1]:
graph.remove_edge(edge[0],edge[1])
return graph
#Upload KEGG codes modified for human pathways
def uploadKEGGcodes_org(codelist, graph, orgDict, KEGGdict, organism):
#queries the KEGG for the pathways with the given codes then uploads to graph. Need to provide the KEGGdict so that we can name the nodes with gene names rather than KO numbers
for code in codelist:
try:
url=urllib2.urlopen('http://rest.kegg.jp/get/'+code+'/kgml')
except:
print('could not read code: ' + code )
continue
text=url.readlines()
readKEGGorg(text, graph, orgDict, KEGGdict, organism)
#print(code)
#print(graph.nodes())
def readKEGGorg(lines, graph, orgDict, KEGGdict, organism):
#read all lines into a bs4 object using libXML parser
soup = BeautifulSoup(''.join(lines), 'xml')
groups = {} # store group IDs and list of sub-ids
id_to_name = {} # map id numbers to names
for entry in soup.find_all('entry'):
#print(entry)
entry_split= entry['name'].split(':')
if len(entry_split)>2:
if entry_split[0]==organism or entry_split[0]=='ko':
if entry_split[0]==organism:
useDict=orgDict
else:
useDict=KEGGdict
nameList=[]
entry_name=''
namer=entry_split.pop(0)
namer=entry_split.pop(0)
namer=namer.split()[0]
entry_name=entry_name+useDict[namer] if namer in useDict.keys() else entry_name+namer
for i in range(len(entry_split)):
nameList.append(entry_split[i].split()[0])
for namer in nameList:
# concatenates gene names into one string when they appear in one entry
# note that these could represent complexes OR functional redundancy- this could probably be handled better?
entry_name=entry_name+'|||'+useDict[namer] if namer in useDict.keys() else entry_name+'|||'+namer
entry_type = entry['type']
else:
entry_name=entry['name']
entry_type = entry['type']
else:
if entry_split[0]==organism:
entry_name=entry_split[1]
entry_type = entry['type']
entry_name = orgDict[entry_name] if entry_name in orgDict.keys() else entry_name
elif entry_split[0]=='ko':
entry_name=entry_split[1]
entry_type = entry['type']
entry_name = KEGGdict[entry_name] if entry_name in KEGGdict.keys() else entry_name
elif entry_split[0]=='path':
entry_name=entry['name']
entry_type='path'
else:
entry_name=entry['name']
entry_type = entry['type']
entry_id = entry['id']
id_to_name[entry_id] = entry_name
if entry_type == 'group':
group_ids = []
for component in entry.find_all('component'):
group_ids.append(component['id'])
groups[entry_id] = group_ids
else:
graph.add_node(str.upper(str(entry_name)), {'name': str.upper(str(entry_name)), 'type': entry_type})
for relation in soup.find_all('relation'):
(color, signal) = ('black', 'a')
relation_entry1 = relation['entry1']
relation_entry2 = relation['entry2']
relation_type = relation['type']
subtypes = []
for subtype in relation.find_all('subtype'):
subtypes.append(subtype['name'])
if ('activation' in subtypes) or ('expression' in subtypes):
color='green'
signal='a'
elif 'inhibition' in subtypes:
color='red'
signal='i'
elif ('binding/association' in subtypes) or('compound' in subtypes):
color='purple'
signal='a'
elif 'phosphorylation' in subtypes:
color='orange'
signal='a'
elif 'dephosphorylation' in subtypes:
color='pink'
signal='i'
elif 'indirect effect' in subtypes:
color='cyan'
signal='a'
elif 'dissociation' in subtypes:
color='yellow'
signal='i'
elif 'ubiquitination' in subtypes:
color='cyan'
signal='i'
else:
print('color not detected. Signal assigned to activation arbitrarily')
print(subtypes)
signal='a'
#given: a node ID that may be a group
#returns: a list that contains all group IDs deconvoluted
def expand_groups(node_id):
node_list = []
if node_id in groups.keys():
for component_id in groups[node_id]:
node_list.extend(expand_groups(component_id))
else:
node_list.extend([node_id])
return node_list
entry1_list = expand_groups(relation_entry1)
entry2_list = expand_groups(relation_entry2)
for (entry1, entry2) in it.product(entry1_list, entry2_list):
node1 = id_to_name[entry1]
node2 = id_to_name[entry2]
graph.add_edge(str.upper(str(node1)),str.upper(str(node2)), color=color, subtype='/'.join(subtypes), type=relation_type, signal=signal)
for node in graph.nodes():
if graph.degree(node)==0:
graph.remove_node(node)
if __name__ == '__main__':
# read in options
parser = argparse.ArgumentParser(prog='BONITA')
parser.set_defaults(verbose=False, mode='PA',sep=',', org='human', pathways='None', gmt='None')
parser.add_argument("-v", action="store_true", dest="verbose", help="output ongoing iterations to screen [default off]")
parser.add_argument("-m", "--mode", metavar="mode", help="What BONITA functions should be run?")
parser.add_argument("-sep", "--sep", metavar="seperator", help="How are columns in datafile specified")
parser.add_argument("-t", action='store_const',const='\t', dest="sep",help="Tab delimited?")
parser.add_argument("-org", "--org", metavar="org", help="How are columns in datafile specified")
parser.add_argument("-paths", "--paths", dest="pathways", help="File with list of pathways to be considered each on one line")
#parser.add_argument("pathways") # 'filtered.c2.cp.kegg.v3.0.symbols.gmt'
parser.add_argument("-gmt", "--gmt", metavar="gmt", help="GMT file with human pathways from msigDB")
parser.add_argument("data")
results = parser.parse_args()
dataName=results.data
gmtName=results.gmt
verbose=results.verbose
mode=results.mode
org=results.org
paths=results.pathways
sss, geneDict, cvDict=readFpkmData(dataName, results.sep) # read in data
#pickle.dump( sss, open( 'sss.pickle', "wb" ) ) # save data in correct format for runs
if org=='human':
if gmtName=='None':
print('Please provide either a specific organism for which all of KEGG should be searched using \"-org\" or specify a gmt of specific human pathways using \"paths\"')
else:
findPathwaysHuman(cvDict, gmtName, geneDict) # generate gpickles needed for pathway analysis
else:
print(org)
print(paths)
if paths=='None':
find_pathways_organism( cvDict, organism=org, writeGraphml=True)
else:
inputfile = open(paths, 'r')
lines = inputfile.readlines()
pathList= []
for line in lines:
for element in line.split(','):
pathList.append(element.strip())
find_pathways_organism(cvDict,organism=org, preDefList=pathList, writeGraphml=True)