-
Notifications
You must be signed in to change notification settings - Fork 118
/
RH_RF95.cpp
710 lines (621 loc) · 21.9 KB
/
RH_RF95.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
// RH_RF95.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: RH_RF95.cpp,v 1.27 2020/07/05 08:52:21 mikem Exp $
#include <RH_RF95.h>
// Maybe a mutex for multithreading on Raspberry Pi?
#ifdef RH_USE_MUTEX
RH_DECLARE_MUTEX(lock);
#endif
// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of RH_RF95, allowing you to have
// 2 or more LORAs per Arduino
RH_RF95* RH_RF95::_deviceForInterrupt[RH_RF95_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t RH_RF95::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// These are indexed by the values of ModemConfigChoice
// Stored in flash (program) memory to save SRAM
PROGMEM static const RH_RF95::ModemConfig MODEM_CONFIG_TABLE[] =
{
// 1d, 1e, 26
{ 0x72, 0x74, 0x04}, // Bw125Cr45Sf128 (the chip default), AGC enabled
{ 0x92, 0x74, 0x04}, // Bw500Cr45Sf128, AGC enabled
{ 0x48, 0x94, 0x04}, // Bw31_25Cr48Sf512, AGC enabled
{ 0x78, 0xc4, 0x0c}, // Bw125Cr48Sf4096, AGC enabled
{ 0x72, 0xb4, 0x04}, // Bw125Cr45Sf2048, AGC enabled
};
RH_RF95::RH_RF95(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI& spi)
:
RHSPIDriver(slaveSelectPin, spi),
_rxBufValid(0)
{
_interruptPin = interruptPin;
_myInterruptIndex = 0xff; // Not allocated yet
_enableCRC = true;
_useRFO = false;
}
bool RH_RF95::init()
{
if (!RHSPIDriver::init())
return false;
#ifdef RH_USE_MUTEX
if (RH_MUTEX_INIT(lock) != 0)
{
Serial.println("\n mutex init has failed\n");
return false;
}
#endif
// For some subclasses (eg RH_ABZ) we dont want to set up interrupt
int interruptNumber = NOT_AN_INTERRUPT;
if (_interruptPin != RH_INVALID_PIN)
{
// Determine the interrupt number that corresponds to the interruptPin
interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
// Tell the low level SPI interface we will use SPI within this interrupt
spiUsingInterrupt(interruptNumber);
}
// No way to check the device type :-(
// Set sleep mode, so we can also set LORA mode:
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE);
delay(10); // Wait for sleep mode to take over from say, CAD
// Check we are in sleep mode, with LORA set
if (spiRead(RH_RF95_REG_01_OP_MODE) != (RH_RF95_MODE_SLEEP | RH_RF95_LONG_RANGE_MODE))
{
// Serial.println(spiRead(RH_RF95_REG_01_OP_MODE), HEX);
return false; // No device present?
}
if (_interruptPin != RH_INVALID_PIN)
{
// Add by Adrien van den Bossche <[email protected]> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actually the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff)
{
// First run, no interrupt allocated yet
if (_interruptCount <= RH_RF95_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, RISING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, RISING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, RISING);
else
return false; // Too many devices, not enough interrupt vectors
}
// Set up FIFO
// We configure so that we can use the entire 256 byte FIFO for either receive
// or transmit, but not both at the same time
spiWrite(RH_RF95_REG_0E_FIFO_TX_BASE_ADDR, 0);
spiWrite(RH_RF95_REG_0F_FIFO_RX_BASE_ADDR, 0);
// Packet format is preamble + explicit-header + payload + crc
// Explicit Header Mode
// payload is TO + FROM + ID + FLAGS + message data
// RX mode is implmented with RXCONTINUOUS
// max message data length is 255 - 4 = 251 octets
setModeIdle();
// Set up default configuration
// No Sync Words in LORA mode.
setModemConfig(Bw125Cr45Sf128); // Radio default
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
setPreambleLength(8); // Default is 8
// An innocuous ISM frequency, same as RF22's
setFrequency(434.0);
// Lowish power
setTxPower(13);
return true;
}
// C++ level interrupt handler for this instance
// LORA is unusual in that it has several interrupt lines, and not a single, combined one.
// On MiniWirelessLoRa, only one of the several interrupt lines (DI0) from the RFM95 is usefuly
// connnected to the processor.
// We use this to get RxDone and TxDone interrupts
void RH_RF95::handleInterrupt()
{
RH_MUTEX_LOCK(lock); // Multithreading support
// we need the RF95 IRQ to be level triggered, or we ……have slim chance of missing events
// https://github.com/geeksville/Meshtastic-esp32/commit/78470ed3f59f5c84fbd1325bcff1fd95b2b20183
// Read the interrupt register
uint8_t irq_flags = spiRead(RH_RF95_REG_12_IRQ_FLAGS);
// Read the RegHopChannel register to check if CRC presence is signalled
// in the header. If not it might be a stray (noise) packet.*
uint8_t hop_channel = spiRead(RH_RF95_REG_1C_HOP_CHANNEL);
// Serial.println(irq_flags, HEX);
// Serial.println(_mode, HEX);
// Serial.println(hop_channel, HEX);
// Serial.println(_enableCRC, HEX);
// ack all interrupts,
// Sigh: on some processors, for some unknown reason, doing this only once does not actually
// clear the radio's interrupt flag. So we do it twice. Why? (kevinh - I think the root cause we want level
// triggered interrupts here - not edge. Because edge allows us to miss handling secondard interrupts that occurred
// while this ISR was running. Better to instead, configure the interrupts as level triggered and clear pending
// at the _beginning_ of the ISR. If any interrupts occur while handling the ISR, the signal will remain asserted and
// our ISR will be reinvoked to handle that case)
// kevinh: turn this off until root cause is known, because it can cause missed interrupts!
// spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
// error if:
// timeout
// bad CRC
// CRC is required but it is not present
if (_mode == RHModeRx
&& ( (irq_flags & (RH_RF95_RX_TIMEOUT | RH_RF95_PAYLOAD_CRC_ERROR))
|| (_enableCRC && !(hop_channel & RH_RF95_RX_PAYLOAD_CRC_IS_ON)) ))
// if (_mode == RHModeRx && irq_flags & (RH_RF95_RX_TIMEOUT | RH_RF95_PAYLOAD_CRC_ERROR))
{
// Serial.println("E");
_rxBad++;
clearRxBuf();
}
// It is possible to get RX_DONE and CRC_ERROR and VALID_HEADER all at once
// so this must be an else
else if (_mode == RHModeRx && irq_flags & RH_RF95_RX_DONE)
{
// Packet received, no CRC error
// Serial.println("R");
// Have received a packet
uint8_t len = spiRead(RH_RF95_REG_13_RX_NB_BYTES);
// Reset the fifo read ptr to the beginning of the packet
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, spiRead(RH_RF95_REG_10_FIFO_RX_CURRENT_ADDR));
spiBurstRead(RH_RF95_REG_00_FIFO, _buf, len);
_bufLen = len;
// Remember the last signal to noise ratio, LORA mode
// Per page 111, SX1276/77/78/79 datasheet
_lastSNR = (int8_t)spiRead(RH_RF95_REG_19_PKT_SNR_VALUE) / 4;
// Remember the RSSI of this packet, LORA mode
// this is according to the doc, but is it really correct?
// weakest receiveable signals are reported RSSI at about -66
_lastRssi = spiRead(RH_RF95_REG_1A_PKT_RSSI_VALUE);
// Adjust the RSSI, datasheet page 87
if (_lastSNR < 0)
_lastRssi = _lastRssi + _lastSNR;
else
_lastRssi = (int)_lastRssi * 16 / 15;
if (_usingHFport)
_lastRssi -= 157;
else
_lastRssi -= 164;
// We have received a message.
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
else if (_mode == RHModeTx && irq_flags & RH_RF95_TX_DONE)
{
// Serial.println("T");
_txGood++;
setModeIdle();
}
else if (_mode == RHModeCad && irq_flags & RH_RF95_CAD_DONE)
{
// Serial.println("C");
_cad = irq_flags & RH_RF95_CAD_DETECTED;
setModeIdle();
}
else
{
// Serial.println("?");
}
// Sigh: on some processors, for some unknown reason, doing this only once does not actually
// clear the radio's interrupt flag. So we do it twice. Why?
spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
spiWrite(RH_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
RH_MUTEX_UNLOCK(lock);
}
// These are low level functions that call the interrupt handler for the correct
// instance of RH_RF95.
// 3 interrupts allows us to have 3 different devices
void RH_INTERRUPT_ATTR RH_RF95::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void RH_INTERRUPT_ATTR RH_RF95::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void RH_INTERRUPT_ATTR RH_RF95::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
// Check whether the latest received message is complete and uncorrupted
void RH_RF95::validateRxBuf()
{
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
}
bool RH_RF95::available()
{
RH_MUTEX_LOCK(lock); // Multithreading support
if (_mode == RHModeTx)
{
RH_MUTEX_UNLOCK(lock);
return false;
}
setModeRx();
RH_MUTEX_UNLOCK(lock);
return _rxBufValid; // Will be set by the interrupt handler when a good message is received
}
void RH_RF95::clearRxBuf()
{
ATOMIC_BLOCK_START;
_rxBufValid = false;
_bufLen = 0;
ATOMIC_BLOCK_END;
}
bool RH_RF95::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
RH_MUTEX_LOCK(lock); // Multithread support
if (buf && len)
{
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen-RH_RF95_HEADER_LEN)
*len = _bufLen-RH_RF95_HEADER_LEN;
memcpy(buf, _buf+RH_RF95_HEADER_LEN, *len);
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
RH_MUTEX_UNLOCK(lock);
return true;
}
bool RH_RF95::send(const uint8_t* data, uint8_t len)
{
if (len > RH_RF95_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
if (!waitCAD())
return false; // Check channel activity
// Position at the beginning of the FIFO
spiWrite(RH_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderTo);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderId);
spiWrite(RH_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(RH_RF95_REG_00_FIFO, data, len);
spiWrite(RH_RF95_REG_22_PAYLOAD_LENGTH, len + RH_RF95_HEADER_LEN);
RH_MUTEX_LOCK(lock); // Multithreading support
setModeTx(); // Start the transmitter
RH_MUTEX_UNLOCK(lock);
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
}
bool RH_RF95::printRegisters()
{
#ifdef RH_HAVE_SERIAL
uint8_t registers[] = { 0x01, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x014, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x4b};
uint8_t i;
for (i = 0; i < sizeof(registers); i++)
{
Serial.print(registers[i], HEX);
Serial.print(": ");
Serial.println(spiRead(registers[i]), HEX);
}
#endif
return true;
}
uint8_t RH_RF95::maxMessageLength()
{
return RH_RF95_MAX_MESSAGE_LEN;
}
bool RH_RF95::setFrequency(float centre)
{
// Frf = FRF / FSTEP
uint32_t frf = (centre * 1000000.0) / RH_RF95_FSTEP;
spiWrite(RH_RF95_REG_06_FRF_MSB, (frf >> 16) & 0xff);
spiWrite(RH_RF95_REG_07_FRF_MID, (frf >> 8) & 0xff);
spiWrite(RH_RF95_REG_08_FRF_LSB, frf & 0xff);
_usingHFport = (centre >= 779.0);
return true;
}
void RH_RF95::setModeIdle()
{
if (_mode != RHModeIdle)
{
modeWillChange(RHModeIdle);
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_STDBY);
_mode = RHModeIdle;
}
}
bool RH_RF95::sleep()
{
if (_mode != RHModeSleep)
{
modeWillChange(RHModeSleep);
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_SLEEP);
_mode = RHModeSleep;
}
return true;
}
void RH_RF95::setModeRx()
{
if (_mode != RHModeRx)
{
modeWillChange(RHModeRx);
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_RXCONTINUOUS);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x00); // Interrupt on RxDone
_mode = RHModeRx;
}
}
void RH_RF95::setModeTx()
{
if (_mode != RHModeTx)
{
modeWillChange(RHModeTx);
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_TX);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x40); // Interrupt on TxDone
_mode = RHModeTx;
}
}
void RH_RF95::setTxPower(int8_t power, bool useRFO)
{
_useRFO = useRFO;
// Sigh, different behaviours depending on whether the module use PA_BOOST or the RFO pin
// for the transmitter output
if (useRFO)
{
if (power > 15)
power = 15;
if (power < 0)
power = 0;
// Set the MaxPower register to 0x7 => MaxPower = 10.8 + 0.6 * 7 = 15dBm
// So Pout = Pmax - (15 - power) = 15 - 15 + power
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_MAX_POWER | power);
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_DISABLE);
}
else
{
if (power > 20)
power = 20;
if (power < 2)
power = 2;
// For RH_RF95_PA_DAC_ENABLE, manual says '+20dBm on PA_BOOST when OutputPower=0xf'
// RH_RF95_PA_DAC_ENABLE actually adds about 3dBm to all power levels. We will use it
// for 8, 19 and 20dBm
if (power > 17)
{
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_ENABLE);
power -= 3;
}
else
{
spiWrite(RH_RF95_REG_4D_PA_DAC, RH_RF95_PA_DAC_DISABLE);
}
// RFM95/96/97/98 does not have RFO pins connected to anything. Only PA_BOOST
// pin is connected, so must use PA_BOOST
// Pout = 2 + OutputPower (+3dBm if DAC enabled)
spiWrite(RH_RF95_REG_09_PA_CONFIG, RH_RF95_PA_SELECT | (power-2));
}
}
// Sets registers from a canned modem configuration structure
void RH_RF95::setModemRegisters(const ModemConfig* config)
{
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, config->reg_1d);
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, config->reg_1e);
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, config->reg_26);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
bool RH_RF95::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(RH_RF95::ModemConfig));
setModemRegisters(&cfg);
return true;
}
void RH_RF95::setPreambleLength(uint16_t bytes)
{
spiWrite(RH_RF95_REG_20_PREAMBLE_MSB, bytes >> 8);
spiWrite(RH_RF95_REG_21_PREAMBLE_LSB, bytes & 0xff);
}
bool RH_RF95::isChannelActive()
{
// Set mode RHModeCad
if (_mode != RHModeCad)
{
modeWillChange(RHModeCad);
spiWrite(RH_RF95_REG_01_OP_MODE, RH_RF95_MODE_CAD);
spiWrite(RH_RF95_REG_40_DIO_MAPPING1, 0x80); // Interrupt on CadDone
_mode = RHModeCad;
}
while (_mode == RHModeCad)
YIELD;
return _cad;
}
void RH_RF95::enableTCXO(bool on)
{
if (on)
{
while ((spiRead(RH_RF95_REG_4B_TCXO) & RH_RF95_TCXO_TCXO_INPUT_ON) != RH_RF95_TCXO_TCXO_INPUT_ON)
{
sleep();
spiWrite(RH_RF95_REG_4B_TCXO, (spiRead(RH_RF95_REG_4B_TCXO) | RH_RF95_TCXO_TCXO_INPUT_ON));
}
}
else
{
while ((spiRead(RH_RF95_REG_4B_TCXO) & RH_RF95_TCXO_TCXO_INPUT_ON))
{
sleep();
spiWrite(RH_RF95_REG_4B_TCXO, (spiRead(RH_RF95_REG_4B_TCXO) & ~RH_RF95_TCXO_TCXO_INPUT_ON));
}
}
}
// From section 4.1.5 of SX1276/77/78/79
// Ferror = FreqError * 2**24 * BW / Fxtal / 500
int RH_RF95::frequencyError()
{
int32_t freqerror = 0;
// Convert 2.5 bytes (5 nibbles, 20 bits) to 32 bit signed int
// Caution: some C compilers make errors with eg:
// freqerror = spiRead(RH_RF95_REG_28_FEI_MSB) << 16
// so we go more carefully.
freqerror = spiRead(RH_RF95_REG_28_FEI_MSB);
freqerror <<= 8;
freqerror |= spiRead(RH_RF95_REG_29_FEI_MID);
freqerror <<= 8;
freqerror |= spiRead(RH_RF95_REG_2A_FEI_LSB);
// Sign extension into top 3 nibbles
if (freqerror & 0x80000)
freqerror |= 0xfff00000;
int error = 0; // In hertz
float bw_tab[] = {7.8, 10.4, 15.6, 20.8, 31.25, 41.7, 62.5, 125, 250, 500};
uint8_t bwindex = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4;
if (bwindex < (sizeof(bw_tab) / sizeof(float)))
error = (float)freqerror * bw_tab[bwindex] * ((float)(1L << 24) / (float)RH_RF95_FXOSC / 500.0);
// else not defined
return error;
}
int RH_RF95::lastSNR()
{
return _lastSNR;
}
///////////////////////////////////////////////////
//
// additions below by Brian Norman 9th Nov 2018
//
// Routines intended to make changing BW, SF and CR
// a bit more intuitive
//
///////////////////////////////////////////////////
void RH_RF95::setSpreadingFactor(uint8_t sf)
{
if (sf <= 6)
sf = RH_RF95_SPREADING_FACTOR_64CPS;
else if (sf == 7)
sf = RH_RF95_SPREADING_FACTOR_128CPS;
else if (sf == 8)
sf = RH_RF95_SPREADING_FACTOR_256CPS;
else if (sf == 9)
sf = RH_RF95_SPREADING_FACTOR_512CPS;
else if (sf == 10)
sf = RH_RF95_SPREADING_FACTOR_1024CPS;
else if (sf == 11)
sf = RH_RF95_SPREADING_FACTOR_2048CPS;
else if (sf >= 12)
sf = RH_RF95_SPREADING_FACTOR_4096CPS;
// set the new spreading factor
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, (spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_SPREADING_FACTOR) | sf);
// check if Low data Rate bit should be set or cleared
setLowDatarate();
}
void RH_RF95::setSignalBandwidth(long sbw)
{
uint8_t bw; //register bit pattern
if (sbw <= 7800)
bw = RH_RF95_BW_7_8KHZ;
else if (sbw <= 10400)
bw = RH_RF95_BW_10_4KHZ;
else if (sbw <= 15600)
bw = RH_RF95_BW_15_6KHZ ;
else if (sbw <= 20800)
bw = RH_RF95_BW_20_8KHZ;
else if (sbw <= 31250)
bw = RH_RF95_BW_31_25KHZ;
else if (sbw <= 41700)
bw = RH_RF95_BW_41_7KHZ;
else if (sbw <= 62500)
bw = RH_RF95_BW_62_5KHZ;
else if (sbw <= 125000)
bw = RH_RF95_BW_125KHZ;
else if (sbw <= 250000)
bw = RH_RF95_BW_250KHZ;
else
bw = RH_RF95_BW_500KHZ;
// top 4 bits of reg 1D control bandwidth
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_BW) | bw);
// check if low data rate bit should be set or cleared
setLowDatarate();
}
void RH_RF95::setCodingRate4(uint8_t denominator)
{
int cr = RH_RF95_CODING_RATE_4_5;
// if (denominator <= 5)
// cr = RH_RF95_CODING_RATE_4_5;
if (denominator == 6)
cr = RH_RF95_CODING_RATE_4_6;
else if (denominator == 7)
cr = RH_RF95_CODING_RATE_4_7;
else if (denominator >= 8)
cr = RH_RF95_CODING_RATE_4_8;
// CR is bits 3..1 of RH_RF95_REG_1D_MODEM_CONFIG1
spiWrite(RH_RF95_REG_1D_MODEM_CONFIG1, (spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) & ~RH_RF95_CODING_RATE) | cr);
}
void RH_RF95::setLowDatarate()
{
// called after changing bandwidth and/or spreading factor
// Semtech modem design guide AN1200.13 says
// "To avoid issues surrounding drift of the crystal reference oscillator due to either temperature change
// or motion,the low data rate optimization bit is used. Specifically for 125 kHz bandwidth and SF = 11 and 12,
// this adds a small overhead to increase robustness to reference frequency variations over the timescale of the LoRa packet."
// read current value for BW and SF
uint8_t BW = spiRead(RH_RF95_REG_1D_MODEM_CONFIG1) >> 4; // bw is in bits 7..4
uint8_t SF = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) >> 4; // sf is in bits 7..4
// calculate symbol time (see Semtech AN1200.22 section 4)
float bw_tab[] = {7800, 10400, 15600, 20800, 31250, 41700, 62500, 125000, 250000, 500000};
float bandwidth = bw_tab[BW];
float symbolTime = 1000.0 * pow(2, SF) / bandwidth; // ms
// the symbolTime for SF 11 BW 125 is 16.384ms.
// and, according to this :-
// https://www.thethingsnetwork.org/forum/t/a-point-to-note-lora-low-data-rate-optimisation-flag/12007
// the LDR bit should be set if the Symbol Time is > 16ms
// So the threshold used here is 16.0ms
// the LDR is bit 3 of RH_RF95_REG_26_MODEM_CONFIG3
uint8_t current = spiRead(RH_RF95_REG_26_MODEM_CONFIG3) & ~RH_RF95_LOW_DATA_RATE_OPTIMIZE; // mask off the LDR bit
if (symbolTime > 16.0)
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current | RH_RF95_LOW_DATA_RATE_OPTIMIZE);
else
spiWrite(RH_RF95_REG_26_MODEM_CONFIG3, current);
}
void RH_RF95::setPayloadCRC(bool on)
{
// Payload CRC is bit 2 of register 1E
uint8_t current = spiRead(RH_RF95_REG_1E_MODEM_CONFIG2) & ~RH_RF95_PAYLOAD_CRC_ON; // mask off the CRC
if (on)
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current | RH_RF95_PAYLOAD_CRC_ON);
else
spiWrite(RH_RF95_REG_1E_MODEM_CONFIG2, current);
_enableCRC = on;
}
uint8_t RH_RF95::getDeviceVersion()
{
_deviceVersion = spiRead(RH_RF95_REG_42_VERSION);
return _deviceVersion;
}