@@ -73,7 +73,7 @@ class RuleClassifier(BaseOperator, BaseClassifier):
73
73
74
74
def __init__ (
75
75
self ,
76
- minsupp_new : int = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
76
+ minsupp_new : float = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
77
77
induction_measure : Measures = DEFAULT_PARAMS_VALUE ['induction_measure' ],
78
78
pruning_measure : Union [Measures ,
79
79
str ] = DEFAULT_PARAMS_VALUE ['pruning_measure' ],
@@ -88,14 +88,14 @@ def __init__(
88
88
max_rule_count : int = DEFAULT_PARAMS_VALUE ['max_rule_count' ],
89
89
approximate_induction : bool = DEFAULT_PARAMS_VALUE ['approximate_induction' ],
90
90
approximate_bins_count : int = DEFAULT_PARAMS_VALUE ['approximate_bins_count' ],
91
- min_rule_covered : Optional [int ] = None ,
91
+ min_rule_covered : Optional [float ] = None ,
92
92
):
93
93
"""
94
94
Parameters
95
95
----------
96
- minsupp_new : int = 5
97
- positive integer representing minimum number of previously uncovered examples to be
98
- covered by a new rule (positive examples for classification problems); default: 5
96
+ minsupp_new : float = 5.0
97
+ a minimum number (or fraction, if value < 1.0) of previously uncovered examples
98
+ to be covered by a new rule (positive examples for classification problems); default: 5,
99
99
induction_measure : :class:`rulekit.params.Measures` = :class:`rulekit.params.\
100
100
Measures.Correlation`
101
101
measure used during induction; default measure is correlation
@@ -137,7 +137,7 @@ def __init__(
137
137
data sets, results may change in future;
138
138
approximate_bins_count: int = 100
139
139
maximum number of bins for an attribute evaluated in the approximate induction.
140
- min_rule_covered : int = None
140
+ min_rule_covered : float = None
141
141
alias to `minsupp_new`. Parameter is deprecated and will be removed in the next major
142
142
version, use `minsupp_new`
143
143
@@ -327,7 +327,7 @@ class ExpertRuleClassifier(ExpertKnowledgeOperator, RuleClassifier):
327
327
328
328
def __init__ (
329
329
self ,
330
- minsupp_new : int = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
330
+ minsupp_new : float = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
331
331
induction_measure : Measures = DEFAULT_PARAMS_VALUE ['induction_measure' ],
332
332
pruning_measure : Union [Measures ,
333
333
str ] = DEFAULT_PARAMS_VALUE ['pruning_measure' ],
@@ -352,14 +352,14 @@ def __init__(
352
352
'preferred_conditions_per_rule' ],
353
353
preferred_attributes_per_rule : int = DEFAULT_PARAMS_VALUE [
354
354
'preferred_attributes_per_rule' ],
355
- min_rule_covered : Optional [int ] = None
355
+ min_rule_covered : Optional [float ] = None
356
356
):
357
357
"""
358
358
Parameters
359
359
----------
360
- minsupp_new : int = 5
361
- positive integer representing minimum number of previously uncovered examples to be
362
- covered by a new rule (positive examples for classification problems); default: 5
360
+ minsupp_new : float = 5.0
361
+ a minimum number (or fraction, if value < 1.0) of previously uncovered examples
362
+ to be covered by a new rule (positive examples for classification problems); default: 5,
363
363
induction_measure : :class:`rulekit.params.Measures` = \
364
364
:class:`rulekit.params.Measures.Correlation`
365
365
measure used during induction; default measure is correlation
@@ -421,7 +421,7 @@ def __init__(
421
421
maximum number of preferred conditions per rule; default: unlimited,
422
422
preferred_attributes_per_rule : int = None
423
423
maximum number of preferred attributes per rule; default: unlimited.
424
- min_rule_covered : int = None
424
+ min_rule_covered : float = None
425
425
alias to `minsupp_new`. Parameter is deprecated and will be removed in the next major
426
426
version, use `minsupp_new`
427
427
@@ -555,7 +555,7 @@ def __init__(
555
555
penalty_strength : float = DEFAULT_PARAMS_VALUE ['penalty_strength' ],
556
556
penalty_saturation : float = DEFAULT_PARAMS_VALUE ['penalty_saturation' ],
557
557
558
- minsupp_new : int = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
558
+ minsupp_new : float = DEFAULT_PARAMS_VALUE ['minsupp_new' ],
559
559
induction_measure : Measures = DEFAULT_PARAMS_VALUE ['induction_measure' ],
560
560
pruning_measure : Union [Measures ,
561
561
str ] = DEFAULT_PARAMS_VALUE ['pruning_measure' ],
@@ -585,9 +585,9 @@ def __init__(
585
585
(s) - penalty strength; Default is 0.5
586
586
penalty_saturation: float
587
587
the value of p_new / P at which penalty reward saturates; Default is 0.2.
588
- minsupp_new : int = 5
589
- positive integer representing minimum number of previously uncovered examples to be
590
- covered by a new rule (positive examples for classification problems); default: 5
588
+ minsupp_new : float = 5.0
589
+ a minimum number (or fraction, if value < 1.0) of previously uncovered examples
590
+ to be covered by a new rule (positive examples for classification problems); default: 5,
591
591
induction_measure : :class:`rulekit.params.Measures` = \
592
592
:class:`rulekit.params.Measures.Correlation`
593
593
measure used during induction; default measure is correlation
0 commit comments