forked from berndporr/py-ecg-detectors
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hrv_time_domain_analysis.py
executable file
·170 lines (124 loc) · 5.01 KB
/
hrv_time_domain_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/python3
# Performs heartrate variation timedomain analysis
#
# It calculates the normalised RMSSD during sitting
# and maths.
#
# This comparison is then run with
# - ground truth (hand corrected R time stamps)
# - Wavelet detector
# - EngZee detector
#
# Via the commandline argument one can choose
# Einthoven II or the ECG from the Chest strap
#
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
from hrv import HRV
from ecgdetectors import Detectors
path_gu_ecg_database = '../dataset_716'
import sys
sys.path.insert(0, path_gu_ecg_database + r'/example_code')
from ecg_gla_database import Ecg
data_path = path_gu_ecg_database + r'/experiment_data'
maths_rr_sd = []
maths_error_rr_sd = []
maths_true_sd = []
sitting_rr_sd = []
sitting_error_rr_sd = []
sitting_true_sd = []
total_subjects = 25
subject = []
if len(sys.argv) < 2:
print("Specify 'e' for Einthoven or 'v' for chest strap ECG.")
exit(1)
for i in range(total_subjects):
#for i in range(2):
print(i)
sitting_class = Ecg(data_path, i, 'sitting')
sitting_class.filter_data()
maths_class = Ecg(data_path, i, 'maths')
maths_class.filter_data()
detectors = Detectors(sitting_class.fs)
if sitting_class.anno_cs_exists and maths_class.anno_cs_exists:
subject.append(i)
hrv_class = HRV(sitting_class.fs)
if "e" in sys.argv[1]:
ecg_channel_sitting = sitting_class.einthoven_II
ecg_channel_maths = maths_class.einthoven_II
elif "v" in sys.argv[1]:
ecg_channel_sitting = sitting_class.cs_V2_V1
ecg_channel_maths = maths_class.cs_V2_V1
else:
print("Bad argument. Specify 'e' for Einthoven or 'v' for the Chest strap.")
exit(1)
r_peaks = detectors.swt_detector(ecg_channel_sitting)
sitting_rr_sd.append(hrv_class.RMSSD(r_peaks,True))
r_peaks = detectors.swt_detector(ecg_channel_maths)
maths_rr_sd.append(hrv_class.RMSSD(r_peaks,True))
sitting_error_rr = detectors.engzee_detector(ecg_channel_sitting)
sitting_error_rr_sd.append(hrv_class.RMSSD(sitting_error_rr,True))
maths_error_rr = detectors.engzee_detector(ecg_channel_maths)
maths_error_rr_sd.append(hrv_class.RMSSD(maths_error_rr,True))
maths_true_rr = maths_class.anno_cs
maths_true_sd.append(hrv_class.RMSSD(maths_true_rr,True))
sitting_true_rr = sitting_class.anno_cs
sitting_true_sd.append(hrv_class.RMSSD(sitting_true_rr,True))
subject = np.array(subject)
width = 0.4
fig, ax = plt.subplots()
rects1 = ax.bar(subject+(0*width), sitting_true_sd, width)
rects2 = ax.bar(subject+(1*width), maths_true_sd, width)
ax.set_ylabel('SDNN (s)')
ax.set_xlabel('Subject')
ax.set_ylim([0,0.1])
ax.set_title('HRV for sitting and maths test')
ax.set_xticks(subject + width)
ax.set_xticklabels(subject)
ax.legend((rects1[0], rects2[0]), ('sitting', 'maths' ))
plt.figure()
ymax = 0.25
# now let's do stats with no error
avg_sitting_rr_sd = np.average(sitting_rr_sd)
sd_sitting_rr_sd = np.std(sitting_rr_sd)
avg_maths_rr_sd = np.average(maths_rr_sd)
sd_maths_rr_sd = np.std(maths_rr_sd)
plt.bar(['sitting','maths'],[avg_sitting_rr_sd,avg_maths_rr_sd],yerr=[sd_sitting_rr_sd,sd_maths_rr_sd],align='center', alpha=0.5, ecolor='black', capsize=10)
plt.ylim([0,ymax])
plt.title("WAVELET: Sitting vs Maths")
plt.ylabel('nRMSSD')
# and stats with error
avg_sitting_error_rr_sd = np.average(sitting_error_rr_sd)
sd_sitting_error_rr_sd = np.std(sitting_error_rr_sd)
avg_maths_error_rr_sd = np.average(maths_error_rr_sd)
sd_maths_error_rr_sd = np.std(maths_error_rr_sd)
avg_sitting_true_sd = np.average(sitting_true_sd)
sd_sitting_true_sd = np.std(sitting_true_sd)
avg_maths_true_sd = np.average(maths_true_sd)
sd_maths_true_sd = np.std(maths_true_sd)
plt.figure()
plt.bar(['sitting','maths'],[avg_sitting_error_rr_sd,avg_maths_error_rr_sd],yerr=[sd_sitting_error_rr_sd,sd_maths_error_rr_sd],align='center', alpha=0.5, ecolor='black', capsize=10)
plt.ylim([0,ymax])
plt.title("Engzee DETECTOR: Sitting vs Maths")
plt.ylabel('nRMSSD')
plt.figure()
plt.bar(['sitting','maths'],[avg_sitting_true_sd,avg_maths_true_sd],yerr=[sd_sitting_true_sd,sd_maths_true_sd],align='center', alpha=0.5, ecolor='black', capsize=10)
plt.ylim([0,ymax])
plt.title("GROUND TRUTH: Sitting vs Maths")
plt.ylabel('nRMSSD')
t,p = stats.wilcoxon(sitting_true_sd,maths_true_sd)
print("GROUND TRUTH (sitting vs maths): p=",p)
t,p = stats.wilcoxon(sitting_rr_sd,maths_rr_sd)
print("WAVELET (sitting vs maths): p=",p)
t,p = stats.wilcoxon(sitting_error_rr_sd,maths_error_rr_sd)
print("EngZee DETECTOR: (sitting vs maths): p=",p)
t,p = stats.wilcoxon(sitting_true_sd,sitting_rr_sd)
print("Sitting: Wavelet vs ground truth, p=",p)
t,p = stats.wilcoxon(sitting_true_sd,sitting_error_rr_sd)
print("Sitting: EngZee vs ground truth, p=",p)
t,p = stats.wilcoxon(maths_true_sd,maths_rr_sd)
print("Maths: Wavelet vs ground truth, p=",p)
t,p = stats.wilcoxon(maths_true_sd,maths_error_rr_sd)
print("Maths: EngZee vs ground truth, p=",p)
plt.show()