-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
823 lines (748 loc) · 38.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>ML-Scope Home</title>
<link rel="icon" type="image/x-icon" href="aida-logo.jpeg" />
<style>
.card {
width: 300px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: white;
overflow: hidden;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.card-img {
width: 100%;
height: 200px;
object-fit: cover;
}
.card-content {
padding: 20px;
}
.card-title {
font-size: 1.5rem;
font-weight: bold;
margin-bottom: 10px;
color: #333;
}
.card-description {
font-size: 1rem;
color: #777;
margin-bottom: 20px;
}
.card-button {
display: inline-block;
padding: 10px 20px;
background-color: #3498db;
color: white;
text-decoration: none;
border-radius: 5px;
text-align: center;
transition: background-color 0.3s ease;
}
.card-button:hover {
background-color: #2980b9;
}
.card:hover {
transform: translateY(-10px);
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.2);
}
:root {
--dark-blue: #1a365d;
--light-blue: #7db0e8;
--orange: #ff6b35;
}
body {
font-family: Arial, sans-serif;
line-height: 1.6;
color: var(--dark-blue);
margin: 0;
padding: 0;
background-color: #f0f8ff;
}
.container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
nav {
background-color: var(--dark-blue);
padding: 10px 0;
width: 100%;
}
nav .container {
display: flex;
justify-content: space-between;
align-items: center;
}
.logo {
width: 50px;
height: 50px;
}
.nav-links a {
color: white;
text-decoration: none;
margin-left: 20px;
}
.nav-links a:hover {
color: var(--light-blue);
}
h1 {
text-align: center;
color: var(--dark-blue);
}
.project-container {
border: 1px solid var(--light-blue);
margin-bottom: 20px;
border-radius: 5px;
overflow: hidden;
background-color: white;
}
.project-header {
background-color: var(--light-blue);
padding: 10px;
cursor: pointer;
display: flex;
justify-content: space-between;
align-items: center;
transition: background-color 0.3s ease;
}
.project-header:hover {
background-color: #6a9fd4;
}
.project-header h2 {
margin: 0;
color: var(--dark-blue);
}
.project-content {
display: none;
padding: 20px;
}
.project-content.active {
display: block;
}
.toggle-icon::after {
content: "\25BC";
color: var(--dark-blue);
}
.project-header.active .toggle-icon::after {
content: "\25B2";
}
a {
color: var(--orange);
text-decoration: none;
text-decoration: underline;
}
a:hover {
text-decoration: underline;
}
.btn {
cursor: pointer;
background-color: var(--orange);
color: var(--dark-blue);
font-weight: 700;
border: none;
width: 200px;
height: 50px;
padding: 5px;
margin: 20px;
transition: 0.8s;
}
.btn:hover {
color: var(--orange);
background-color: var(--dark-blue);
}
</style>
</head>
<body>
<nav>
<div class="container">
<a href="index.html">
<img src="aida-logo.jpeg" alt="Logo" class="logo" />
</a>
<div class="nav-links">
<a href="index.html">Problems</a>
<a href="solutions.html">Solutions</a>
<a href="leaderboard.html">Leaderboard</a>
<a href="resources.html">Resources</a>
</div>
</div>
</nav>
<div class="container">
<h1>MLScope</h1>
<center>
<a target="_blank" href="https://forms.gle/f6KSeTXnQsAuopAw9"
><button class="btn">Challenge 3 Submission</button></a
>
</center>
<div id="content"></div>
</div>
<!-- <center>
<div class="card">
<img src="aida-logo.jpeg" alt="Image" class="card-img" />
<div class="card-content">
<h3 class="card-title">Welcome to SigAida for Spring 2025!</h3>
<p class="card-description">Problems to be released soon!</p>
<a
target="_blank"
href="https://docs.google.com/presentation/d/12lF7_MIpwJHRxNBcHVJDx2PAkXy9FHm-A2v9gMwLUwo/edit?usp=sharing"
class="card-button"
>Learn More</a
>
</div>
</div>
</center> -->
<script>
// const problemsData = [
// {
// project: 1,
// title: "House Price Prediction",
// content: `
// <p>In this task, the goal is to predict house prices in King County using a regression model. Given features like square footage, number of bedrooms, and location, you will utilize models to accurately estimate house prices. This involves data cleaning, model training/utilization, and model performance evaluation.</p>
// <h4>Dataset:</h4>
// <p><a href="https://www.kaggle.com/datasets/harlfoxem/housesalesprediction" target="_blank" rel="noopener noreferrer">House Sales Prediction Dataset</a></p>
// <p>The dataset contains house sales data from King County, Washington. It has 21,613 rows and 21 columns, covering features like price, sqft_living, bedrooms, bathrooms, waterfront, and zip code, among others. The price column is the target variable, and the other features are used to predict house prices.</p>
// <h4>Starter Notebook (not required to use):</h4>
// <p><a href="https://colab.research.google.com/drive/1yhrpIwnvJ7ExjYacx-ixmRcW09JPn2rX?usp=sharing" target="_blank" rel="noopener noreferrer">Make a Copy to Use:</a></p>
// <h4>Goals/tasks:</h4>
// <ul>
// <li>Clean dataset (remove unnecessary columns from the dataset to use it for regression)</li>
// <li>Train/test split</li>
// <li>Set up code for training model (using library of choice)</li>
// <li>Train model with hyperparameters</li>
// <li>Test model against test data</li>
// </ul>
// <h4>Potential Skills:</h4>
// <h5>Starter</h5>
// <ul>
// <li>Linear Regression</li>
// <li>scikit-learn</li>
// </ul>
// <h5>Bonus</h5>
// <ul>
// <li>Simple Decision Tree</li>
// <li>Random Forest</li>
// <li>PyTorch</li>
// </ul>
// <h4>Useful Package Documentation:</h4>
// <ol>
// <li><strong>NumPy</strong> (for numerical computations): <a href="https://numpy.org/doc/" target="_blank" rel="noopener noreferrer">NumPy Documentation</a></li>
// <li><strong>pandas</strong> (for data manipulation): <a href="https://pandas.pydata.org/docs/" target="_blank" rel="noopener noreferrer">pandas Documentation</a></li>
// <li><strong>scikit-learn</strong> (for model training and evaluation): <a href="https://scikit-learn.org/stable/documentation.html" target="_blank" rel="noopener noreferrer">scikit-learn Documentation</a></li>
// <li><strong>matplotlib</strong> (for data visualization): <a href="https://matplotlib.org/stable/contents.html" target="_blank" rel="noopener noreferrer">matplotlib Documentation</a></li>
// <li><strong>PyTorch</strong> (for deep learning-based models): <a href="https://pytorch.org/docs/stable/index.html" target="_blank" rel="noopener noreferrer">PyTorch Documentation</a></li>
// </ol>
// `,
// },
// {
// project: 2,
// title: "Heart Disease Classifier",
// content: `
// <p>In this task, the goal is to classify whether a given patient has heart disease using a classifier model. Given features like age, sex, chest pain type, blood pressure, etc. you will utilize models to accurately predict whether or not a patient has heart disease. This involves data cleaning, model training/utilization, and model performance evaluation.</p>
// <h4>Dataset:</h4>
// <p><a href="https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset" target="_blank" rel="noopener noreferrer">Heart Disease Classifier Dataset</a></p>
// <p>The dataset contains heart data attributes from four medical databases (Cleveland, Hungary, Switzerland, Long Beach). It has 1026 rows and 15 columns, covering features like age, sex, chest pain type, blood pressure, among others. The target column is the target variable, where 1 = heart disease and 0 = no heart disease. For a full breakdown, you can view the kaggle description of the dataset.</p>
// <h4>Starter Notebook (not required to use):</h4>
// <p><a href="https://colab.research.google.com/drive/1oYpGxTEJN3fo4RInWTGrQIvfUrXqW67I?usp=sharing" target="_blank" rel="noopener noreferrer">Make a Copy to Use</a></p>
// <h4>Goals/tasks:</h4>
// <ul>
// <li>Clean dataset (remove unnecessary columns from the dataset to use it for classification)</li>
// <li>Train/test split</li>
// <li>Set up code for training model (using library of choice)</li>
// <li>Train model with hyperparameters</li>
// <li>Test model against test data</li>
// </ul>
// <h4>Potential Skills:</h4>
// <h5>Starter</h5>
// <ul>
// <li>Logistic Regression</li>
// <li>SVM</li>
// <li>scikit-learn</li>
// </ul>
// <h5>Bonus</h5>
// <ul>
// <li>Decision Tree</li>
// <li>Random Forest Classifier</li>
// <li>PyTorch</li>
// <li>Neural Networks</li>
// </ul>
// <h4>Useful Package Documentation:</h4>
// <ol>
// <li><strong>NumPy</strong> (for numerical computations): <a href="https://numpy.org/doc/" target="_blank" rel="noopener noreferrer">NumPy Documentation</a></li>
// <li><strong>pandas</strong> (for data manipulation): <a href="https://pandas.pydata.org/docs/" target="_blank" rel="noopener noreferrer">pandas Documentation</a></li>
// <li><strong>scikit-learn</strong> (for model training and evaluation): <a href="https://scikit-learn.org/stable/documentation.html" target="_blank" rel="noopener noreferrer">scikit-learn Documentation</a></li>
// <li><strong>matplotlib</strong> (for data visualization): <a href="https://matplotlib.org/stable/contents.html" target="_blank" rel="noopener noreferrer">matplotlib Documentation</a></li>
// <li><strong>PyTorch</strong> (for deep learning-based models): <a href="https://pytorch.org/docs/stable/index.html" target="_blank" rel="noopener noreferrer">PyTorch Documentation</a></li>
// </ol>
// `,
// },
// {
// project: 3,
// title: "Benchmarking LLMs Against a Baseline Dataset",
// content: `
// <p>This project explores the crucial task of benchmarking Large Language Models (LLMs) against a baseline dataset. The goal is to evaluate LLM performance and analyze the impact of design choices and parameter tuning on model accuracy. By systematically comparing LLMs to a baseline, participants can gain insights into their strengths, weaknesses, and overall capabilities, aiding in selecting the most suitable LLM for specific applications.</p>
// <h4>Dataset:</h4>
// <p><a href="https://huggingface.co/datasets/gsm8k" target="_blank" rel="noopener noreferrer">GSM8K Dataset</a></p>
// <p>The GSM8K dataset consists of 8,000 high-quality grade school math problems specifically designed to test LLM reasoning capabilities. The "main" version of the dataset is divided into train and test splits, with the test split containing 1,319 problems. Each problem contains a question and an answer in text format, and the challenge is to produce the correct numerical answer. The test split will be used for evaluating LLM performance.</p>
// <h4>Starter Notebook:</h4>
// <p><a href="https://colab.research.google.com/drive/1xWtiFpSRIUGO1a_24T1e_PtDQCEf-haF?usp=sharing" target="_blank" rel="noopener noreferrer">Make a Copy to Use</a></p>
// <h4>Goals/tasks:</h4>
// <ul>
// <li>Set up API calls to interact with a given LLM model (LLaMa-3-8B)</li>
// <li>Explore different prompt engineering techniques</li>
// <li>Adjust model parameters and settings to optimize performance</li>
// <li>Evaluate the model against the test dataset</li>
// <li>Calculate the final accuracy and compare against the baseline</li>
// </ul>
// <h4>Potential Skills:</h4>
// <h5>Starter</h5>
// <ul>
// <li>Prompt Engineering</li>
// <li>API Integration</li>
// <li>Text Normalization and Cleaning</li>
// </ul>
// <h5>Bonus</h5>
// <ul>
// <li>Advanced Parameter Tuning</li>
// <li>Exploring Different LLM Architectures</li>
// <li>Evaluation and Analysis Techniques</li>
// </ul>
// <h4>Useful Package Documentation:</h4>
// <ol>
// <li><strong>transformers</strong> (for LLM model interactions): <a href="https://huggingface.co/docs/transformers/index" target="_blank" rel="noopener noreferrer">Transformers Documentation</a></li>
// <li><strong>datasets</strong> (for dataset loading and management): <a href="https://huggingface.co/docs/datasets/index" target="_blank" rel="noopener noreferrer">Datasets Documentation</a></li>
// <li><strong>Replicate</strong> (for model hosting and API calls): <a href="https://replicate.com/docs/reference/http" target="_blank" rel="noopener noreferrer">Replicate Documentation</a></li>
// <li><strong>re</strong> (for text processing): <a href="https://docs.python.org/3/library/re.html" target="_blank" rel="noopener noreferrer">Python re Documentation</a></li>
// </ol>
// `,
// },
// {
// project: 4,
// title: "MNIST Digit Classification",
// content: `
// <p>In this challenge, you'll work with the classic MNIST dataset to create a digit classification model. Beyond basic classification, you can tackle additional advanced challenges to enhance your model's capabilities and earn bonus points.</p>
// <h4>Dataset:</h4>
// <p><a href="https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data" target="_blank" rel="noopener noreferrer">MNIST Dataset</a> (no need to specifiy 'path' parameter)</p>
// <p>The MNIST database contains 60,000 training images and 10,000 testing images of handwritten digits. Each image is a 28x28 grayscale image of a single digit (0-9). This is a great dataset for learning the basics of neural networks and image classification.</p>
// <h4>Starter Notebook (not required to use):</h4>
// <p><a href="https://colab.research.google.com/drive/1zm01NpRwq4j2tQuqCDW70sUFzp5r6XKW?usp=sharing" target="_blank" rel="noopener noreferrer">Make a Copy to Use</a></p>
// <h4>Basic Goals/tasks:</h4>
// <ul>
// <li>Load and preprocess the MNIST dataset</li>
// <li>Design and implement a neural network architecture</li>
// <li>Train the model with appropriate hyperparameters</li>
// <li>Evaluate model performance on the test set</li>
// <li>Visualize results and confusion matrix</li>
// </ul>
// <h4>[Optional]: Bonus Challenges (Choose any or do your own):</h4>
// <h5>1. Confidence Scoring and Uncertainty</h5>
// <ul>
// <li>Implement confidence scoring for predictions</li>
// <li>Visualize prediction uncertainty</li>
// <li>Analyze cases with low confidence scores</li>
// </ul>
// <h5>2. Sequential Digits Recognition</h5>
// <ul>
// <li>Create synthetic sequences from MNIST digits (for example: 123 or 38183)</li>
// <li>Implement RNN/LSTM architecture for sequence recognition</li>
// <li>Train and evaluate on multi-digit sequences</li>
// </ul>
// <h5>3. Image-to-Equation Conversion</h5>
// <ul>
// <li>Generate simple mathematical equations using MNIST digits</li>
// <li>Develop a pipeline to recognize and parse equations</li>
// <li>Implement equation solving functionality</li>
// </ul>
// <h5>4. Stylized MNIST Digits</h5>
// <ul>
// <li>Apply various transformations to MNIST digits (rotations, noise addition, etc.)</li>
// <li>Train model on augmented dataset</li>
// <li>Evaluate robustness to different styles and transformations</li>
// </ul>
// <h4>Potential Skills:</h4>
// <h5>Starter</h5>
// <ul>
// <li>Convolutional Neural Networks (CNNs)</li>
// <li>PyTorch or TensorFlow</li>
// <li>Basic Image Processing</li>
// </ul>
// <h5>Bonus</h5>
// <ul>
// <li>RNNs/LSTMs</li>
// <li>Data Augmentation</li>
// <li>Uncertainty Estimation</li>
// <li>Advanced Architecture Design</li>
// </ul>
// <h4>Useful Package Documentation:</h4>
// <ol>
// <li><strong>PyTorch</strong>: <a href="https://pytorch.org/docs/stable/index.html" target="_blank" rel="noopener noreferrer">PyTorch Documentation</a></li>
// <li><strong>TensorFlow</strong>: <a href="https://www.tensorflow.org/api_docs" target="_blank" rel="noopener noreferrer">TensorFlow Documentation</a></li>
// <li><strong>OpenCV</strong>: <a href="https://docs.opencv.org/4.x/" target="_blank" rel="noopener noreferrer">OpenCV Documentation</a></li>
// <li><strong>scikit-learn</strong>: <a href="https://scikit-learn.org/stable/documentation.html" target="_blank" rel="noopener noreferrer">scikit-learn Documentation</a></li>
// </ol>
// `,
// },
// ];
const problemsData = [
{
project: 1,
title: "Multi-City Housing Market Analysis & Prediction",
content: `
<p>In this comprehensive project, you'll analyze and predict housing prices across multiple major US metropolitan areas using advanced regression techniques. The goal is to not only predict prices but also understand market trends, identify key value drivers, and develop insights for real estate investment decisions.</p>
<h4>Datasets:</h4>
<p><strong>Primary Dataset:</strong> <a href="https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset" target="_blank" rel="noopener noreferrer">California Housing Dataset</a></p>
<p>Contains housing data from California districts with features including median income, housing median age, average rooms, population, etc.</p>
<p><strong>Supplementary Datasets (optional):</strong></p>
<ul>
<li><a href="https://www.zillow.com/research/data/" target="_blank" rel="noopener noreferrer">Zillow Research Data</a></li>
<li><a href="https://www.census.gov/housing/hvs/data/index.html" target="_blank" rel="noopener noreferrer">US Census Housing Data</a></li>
</ul>
<h4>Project Components (% of points):</h4>
<h5>1. Data Preparation & Analysis (25%)</h5>
<ul>
<li>Clean and preprocess multiple datasets</li>
<li>Handle missing values and outliers</li>
<li>Feature engineering:
<ul>
<li>Create new features (price per sq ft, age of house categories)</li>
<li>Generate location-based features (distance to amenities)</li>
<li>Develop economic indicators (price-to-rent ratio)</li>
</ul>
</li>
<li>Perform exploratory data analysis with visualizations</li>
</ul>
<h5>2. Model Development (45%)</h5>
<ul>
<li>Options for implementing models:
<ul>
<li>Linear Regression (baseline)</li>
<li>Random Forest</li>
<li>Gradient Boosting (XGBoost/LightGBM)</li>
<li>Neural Network (optional)</li>
</ul>
</li>
<li>Feature selection and importance analysis</li>
<li>Cross-validation strategy</li>
<li>Hyperparameter optimization</li>
</ul>
<h5>3. Market Analysis/Data Visualization (30%)</h5>
<ul>
<li>Segment markets by geographic regions</li>
<li>Analyze price trends over time</li>
<li>Identify key value drivers by region</li>
<li>Create market health indicators</li>
<li>Build interactive visualizations</li>
<h5>*Note: This part is subjective - visualize data, trends, make some cool graphs!, etc. </h5>
</ul>
<h4>Required Libraries:</h4>
<pre><code>
import pandas as pd
import numpy as np
import sklearn
import matplotlib.pyplot as plt
</code></pre>
<h4>Skills:</h4>
<h5>Required Skills</h5>
<ul>
<li>Python programming</li>
<li>Data cleaning and preprocessing</li>
<li>Statistical analysis</li>
<li>Machine learning fundamentals</li>
<li>Data visualization</li>
</ul>
<h5>Advanced Skills (Bonus)</h5>
<ul>
<li>Advanced regression models</li>
<li>Time series analysis</li>
<li>Deep learning</li>
</ul>
<h4>Useful Package Documentation:</h4>
<ol>
<li><strong>pandas</strong> (for data manipulation): <a href="https://pandas.pydata.org/docs/" target="_blank" rel="noopener noreferrer">pandas Documentation</a></li>
<li><strong>scikit-learn</strong> (for model training): <a href="https://scikit-learn.org/stable/documentation.html" target="_blank" rel="noopener noreferrer">scikit-learn Documentation</a></li>
<li><strong>XGBoost</strong> (for gradient boosting): <a href="https://xgboost.readthedocs.io/" target="_blank" rel="noopener noreferrer">XGBoost Documentation</a></li>
</ol>
`,
},
{
project: 2,
title: "Heart Disease Binary Classifier",
content: `
<p>In this comprehensive project, you'll build an advanced heart disease prediction system using classification algorithms. The goal is to accurately predict the presence of heart disease while understanding key risk factors, developing interpretable models, and creating an interactive system that could potentially aid medical professionals.</p>
<p><strong>Primary Dataset:</strong> <a href="https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset" target="_blank" rel="noopener noreferrer">Heart Disease Classifier Dataset</a></p>
<p>The dataset contains heart data attributes from four medical databases (Cleveland, Hungary, Switzerland, Long Beach). It has 1026 rows and 15 columns, covering features like age, sex, chest pain type, blood pressure, among others. The target column is the target variable, where 1 = heart disease and 0 = no heart disease.</p>
<p><strong>Supplementary Datasets (optional):</strong></p>
<ul>
<li><a href="https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction" target="_blank" rel="noopener noreferrer">Heart Failure Prediction Dataset</a></li>
<li><a href="https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset" target="_blank" rel="noopener noreferrer">Cardiovascular Disease Dataset</a></li>
<li><a href="https://www.cdc.gov/nchs/fastats/heart-disease.htm" target="_blank" rel="noopener noreferrer">CDC Heart Disease Statistics</a></li>
</ul>
<h4>Project Components (% of points):</h4>
<h5>1. Data Preparation & Analysis (25%)</h5>
<ul>
<li>Clean and preprocess the dataset</li>
<li>Handle missing values and outliers using medical domain knowledge</li>
<li>Feature engineering (optional):
<ul>
<li>Create new features (BMI, combined risk factors)</li>
<li>Develop risk index scores</li>
<li>Normalize/standardize features appropriately</li>
</ul>
</li>
<li>Perform exploratory data analysis with medical context</li>
<li>Analyze feature correlations</li>
<li>Apply feature selection methods</li>
<li>Address class imbalance if present (SMOTE, class weights) (optional)</li>
</ul>
<h5>2. Model Development (45%)</h5>
<ul>
<li>Options for implementing models:
<ul>
<li>Logistic Regression (baseline with regularization)</li>
<li>Decision Trees</li>
<li>Random Fores</li>
<li>Support Vector Machines</li>
<li>Gradient Boosting (XGBoost/LightGBM)</li>
<li>Neural Networks</li>
</ul>
</li>
<li>Cross-validation strategy (stratified k-fold)</li>
<li>Hyperparameter optimization using grid/random/Bayesian search (optional)</li>
<li>ROC curve analysis and optimal threshold selectionn (optional)</li>
<li>Evaluation metrics other than accuracy (sensitivity, specificity, F1-score)</li>
</ul>
<h5>3. Clinical Relevance (20%)</h5>
<ul>
<li>Analyze model performance across different demographic groups</li>
<li>Create visualizations showing how feature values impact risk</li>
<li>Analyze false positives and false negatives from a clinical perspective</li>
<li><h5>*Note: This part is subjective - visualize data, patient profiles, make some cool graphs!, etc.</h5></li>
</ul>
<h5>4. Advanced Implementation (10%) (optional)</h5>
<ul>
<li>Develop a simple web application for model deployment</li>
<li>Add confidence intervals for predictions</li>
<li>Compare model performance with published medical studies</li>
</ul>
<h4>Useful Libraries:</h4>
<pre><code>
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix, classification_report
import xgboost as xgb
import shap
import plotly.express as px
</code></pre>
<h4>Skills:</h4>
<h5>Required Skills</h5>
<ul>
<li>Python programming</li>
<li>Data cleaning and preprocessing</li>
<li>Statistical analysis</li>
<li>Machine learning fundamentals</li>
<li>Classification algorithms</li>
<li>Model evaluation techniques</li>
</ul>
<h5>Advanced Skills (Bonus)</h5>
<ul>
<li>Advanced classification models</li>
<li>Model interpretability techniques (eg. Identify what 3 features that lead to the classification decision)</li>
<li>Healthcare analytics</li>
<li>Deep learning for tabular data</li>
<li>Web application development (Flask/Streamlit)</li>
<li>Fairness and bias analysis in healthcare models</li>
<li>Deployment strategies for healthcare applications</li>
<li>Feature importance visualization</li>
</ul>
<h4>Useful Package Documentation:</h4>
<ol>
<li><strong>NumPy</strong> (for numerical computations): <a href="https://numpy.org/doc/" target="_blank" rel="noopener noreferrer">NumPy Documentation</a></li>
<li><strong>pandas</strong> (for data manipulation): <a href="https://pandas.pydata.org/docs/" target="_blank" rel="noopener noreferrer">pandas Documentation</a></li>
<li><strong>scikit-learn</strong> (for model training and evaluation): <a href="https://scikit-learn.org/stable/documentation.html" target="_blank" rel="noopener noreferrer">scikit-learn Documentation</a></li>
<li><strong>matplotlib</strong> (for data visualization): <a href="https://matplotlib.org/stable/contents.html" target="_blank" rel="noopener noreferrer">matplotlib Documentation</a></li>
<li><strong>XGBoost</strong> (for gradient boosting): <a href="https://xgboost.readthedocs.io/" target="_blank" rel="noopener noreferrer">XGBoost Documentation</a></li>
<li><strong>SHAP</strong> (for model interpretability): <a href="https://shap.readthedocs.io/" target="_blank" rel="noopener noreferrer">SHAP Documentation</a></li>
<li><strong>Streamlit</strong> (for creating dashboards): <a href="https://docs.streamlit.io/" target="_blank" rel="noopener noreferrer">Streamlit Documentation</a></li>
<li><strong>Plotly</strong> (for interactive visualizations): <a href="https://plotly.com/python/" target="_blank" rel="noopener noreferrer">Plotly Documentation</a></li>
<li><strong>Flask</strong> (for web applications): <a href="https://flask.palletsprojects.com/" target="_blank" rel="noopener noreferrer">Flask Documentation</a></li>
</ol>
`,
},
{
project: 3,
title: "Stock Market Prediction with Time Series Methods",
content: `
<p>In this challenge, you'll develop an advanced stock market prediction model using deep learning techniques like RNNs, LSTMs, while comparing them to traditional time series models like ARIMA. You'll explore feature engineering, interpretability, and the effectiveness of different approaches in predicting stock prices.</p>
<h4>Datasets:</h4>
<p><strong>Primary Dataset:</strong> Publicly available stock market data from:</p>
<ul>
<li><a href="https://finance.yahoo.com/" target="_blank" rel="noopener noreferrer">Yahoo Finance</a></li>
<li><a href="https://www.quandl.com/" target="_blank" rel="noopener noreferrer">Quandl</a></li>
<li><a href="https://www.alphavantage.co/" target="_blank" rel="noopener noreferrer">Alpha Vantage</a></li>
<li><a href="https://www.kaggle.com/" target="_blank" rel="noopener noreferrer">Kaggle Stock Market Datasets</a></li>
</ul>
<h4>Supplementary Datasets (optional):</h4>
<ul>
<li>Public sentiment data (Twitter, Reddit, news sources)</li>
<li>Economic indicators (inflation rate, interest rates, unemployment)</li>
<li>Alternative data (climate effects, holiday trends)</li>
</ul>
<h4>Project Components (% of points):</h4>
<h5>1. Data Preparation & Feature Engineering (25%)</h5>
<ul>
<li>Clean and preprocess stock market data</li>
<li>Handle missing values, outliers, and normalize appropriately</li>
<li>Feature engineering (choose at least three):
<ul>
<li>Volatility, moving averages, Bollinger Bands</li>
<li>Fourier or Wavelet Transform of time series data</li>
<li>Sentiment scores from news/social media</li>
<li>Time-based features (day of the week, market open/close trends)</li>
<li>Macroeconomic indicators (inflation rate, interest rates, unemployment)</li>
</ul>
</li>
<li>Perform exploratory data analysis (EDA) with stock market insights</li>
<li>Stationarity testing and transformations for time series models (optional)</li>
</ul>
<h5>2. Model Development & Comparison (45%)</h5>
<ul>
<li>Baseline Models:
<ul>
<li>ARIMA (or SARIMA)</li>
<li>Simple Moving Average & Exponential Smoothing</li>
</ul>
</li>
<li>Deep Learning Approaches:
<ul>
<li>RNN, LSTM, or GRU for stock price forecasting</li>
</ul>
</li>
<li>Model Comparison:
<ul>
<li>Compare deep learning models vs. traditional models using RMSE, MAE, MAPE</li>
<li>Backtesting strategy to evaluate performance on real data</li>
<li>Hyperparameter tuning (Bayesian search, Grid search, etc.)</li>
</ul>
</li>
</ul>
<h5>3. Explainability & Feature Importance (20%)</h5>
<ul>
<li>Use SHAP, LIME, or attention mechanisms to explain model predictions</li>
<li>Identify key indicators that influence stock price movements</li>
<li>Analyze why simpler models may/may not outperform deep learning methods</li>
<li>Visualize feature impact using SHAP plots or correlation heatmaps</li>
</ul>
<h5>4. Advanced Implementation (10%) (Optional)</h5>
<ul>
<li>Deploy your model using a simple Streamlit/Flask dashboard</li>
<li>Implement a real-time data pipeline (fetch live stock data and predict)</li>
<li>Develop a basic trading strategy using reinforcement learning</li>
<li>Compare performance across different stock types (e.g., tech vs. commodities)</li>
</ul>
<h4>Required Libraries:</h4>
<pre><code>
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import yfinance as yf
from statsmodels.tsa.arima.model import ARIMA
import torch
import torch.nn as nn
import torch.optim as optim
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
import shap
import plotly.express as px
</code></pre>
<h4>Skills:</h4>
<h5>Required Skills</h5>
<ul>
<li>Python programming</li>
<li>Time series analysis</li>
<li>Data preprocessing</li>
<li>Machine learning & deep learning fundamentals</li>
<li>Model evaluation techniques</li>
</ul>
<h5>Advanced Skills (Bonus)</h5>
<ul>
<li>Stock market analysis & financial metrics</li>
<li>Time series forecasting techniques (Fourier Transform, Wavelets)</li>
<li>Model interpretability (SHAP, LIME, Attention)</li>
<li>Reinforcement Learning for trading bots</li>
<li>Web deployment (Flask/Streamlit)</li>
</ul>
<h4>Useful Package Documentation:</h4>
<ol>
<li><strong>pandas</strong> (for data manipulation): <a href="https://pandas.pydata.org/docs/" target="_blank" rel="noopener noreferrer">pandas Documentation</a></li>
<li><strong>scikit-learn</strong> (for model training): <a href="https://scikit-learn.org/stable/documentation.html" target="_blank" rel="noopener noreferrer">scikit-learn Documentation</a></li>
<li><strong>TensorFlow/Keras</strong> (for deep learning): <a href="https://www.tensorflow.org/guide/keras" target="_blank" rel="noopener noreferrer">Keras Documentation</a></li>
<li><strong>SHAP</strong> (for model interpretability): <a href="https://shap.readthedocs.io/" target="_blank" rel="noopener noreferrer">SHAP Documentation</a></li>
</ol>
`,
},
];
const solutionsData = [];
// const solutionsData = [
// {
// project: 1,
// title: "House Price Prediction Solution",
// content: `
// <p>Solutions for Project 1 will be uploaded here after the submission deadline.</p>
// `,
// },
//
// ];
function createProjectElement(projectData) {
const projectElement = document.createElement("div");
projectElement.className = "project-container";
projectElement.innerHTML = `
<div class="project-header">
<h2>MLScope ${projectData.project}: ${projectData.title}</h2>
<span class="toggle-icon"></span>
</div>
<div class="project-content">
${projectData.content}
</div>
`;
return projectElement;
}
function toggleProject(projectHeader) {
projectHeader.classList.toggle("active");
const content = projectHeader.nextElementSibling;
content.classList.toggle("active");
}
function loadContent(data) {
const contentDiv = document.getElementById("content");
contentDiv.innerHTML = "";
data.forEach((project, index) => {
const projectElement = createProjectElement(project);
contentDiv.appendChild(projectElement);
const projectHeader = projectElement.querySelector(".project-header");
projectHeader.addEventListener("click", () =>
toggleProject(projectHeader)
);
// Open the last project by default
if (index === data.length - 1) {
toggleProject(projectHeader);
}
});
}
// Determine which page to load based on the current URL
const currentPage = window.location.pathname.includes("solutions.html")
? "solutions"
: "problems";
loadContent(currentPage === "solutions" ? solutionsData : problemsData);
</script>
</body>
</html>