-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
71 lines (65 loc) · 2.64 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
The build/compilations setup
>> pip install -r requirements.txt
>> python setup.py install
"""
import pip
import logging
import pkg_resources
try:
from setuptools import setup, find_packages
except ImportError:
from distutils.core import setup
def _parse_requirements(file_path):
pip_ver = pkg_resources.get_distribution('pip').version
pip_version = list(map(int, pip_ver.split('.')[:2]))
if pip_version >= [6, 0]:
raw = pip.req.parse_requirements(file_path,
session=pip.download.PipSession())
else:
raw = pip.req.parse_requirements(file_path)
return [str(i.req) for i in raw]
with open("README.md", "r") as fh:
long_description = fh.read()
# parse_requirements() returns generator of pip.req.InstallRequirement objects
try:
install_reqs = _parse_requirements("requirements.txt")
except Exception:
logging.warning('Fail load requirements file, so using default ones.')
install_reqs = []
setup(
name='deeptetrad',
version='1.0.1.0',
url='https://github.com/abysslover/deeptetrad',
author='Eun-Cheon Lim',
author_email='[email protected]',
license='GPL3.0',
description='DeepTetrad: a deep learning model for fluorescent pollen-tetrad image analysis',
package_dir={'': '.', 'deeptetrad': './src/deeptetrad', 'mrcnn': './src/mrcnn', 'imgaug': './src/imgaug'},
packages=find_packages(where="./src"),
package_data={'deeptetrad': ['src/deeptetrad/pollen/*/*', 'src/deeptetrad/tetrad/*/*'], 'imgaug': ['src/imgaug/*.ttf', 'src/imgaug/*.json', 'src/imgaug/*.png', 'src/imgaug/*.jpg']},
install_requires=install_reqs,
include_package_data=True,
python_requires='>=3.4',
entry_points = {
'console_scripts': ['deeptetrad=deeptetrad.entry:main'],
},
long_description=long_description,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Environment :: Console",
"Intended Audience :: Developers",
"Intended Audience :: Information Technology",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Natural Language :: English",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Image Recognition",
"Topic :: Scientific/Engineering :: Visualization",
# "Topic :: Scientific/Engineering :: Image Segmentation",
"Programming Language :: Python :: 3",
],
keywords="tetrad crossover interference tensorflow keras",
)