-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_rarestfirst.py
170 lines (153 loc) · 7.47 KB
/
main_rarestfirst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
from tqdm import tqdm
import Algorithms
import utilities
class Results:
def __init__(self):
self.tot_time = 0
self.task_size = 0
self.cardinality = 0
self.radius = 0
self.diameter = 0
self.leader_distance = 0
self.leader_skill_distance = 0
self.sum_distance = 0
self.shannon_task_diversity = 0
self.shannon_team_diversity = 0
# self.simpson_task_density = 0
# self.simpson_team_density = 0
self.simpson_task_diversity = 0 # task diversity
self.simpson_team_diversity = 0
self.gini_simpson_task_diversity = 0 # task diversity
self.gini_simpson_team_diversity = 0
self.random_experts = 0
def clean_it(self):
self.tot_time = 0
self.task_size = 0
self.cardinality = 0
self.radius = 0
self.diameter = 0
self.leader_distance = 0
self.leader_skill_distance = 0
self.sum_distance = 0
self.shannon_task_diversity = 0
self.random_experts = 0
self.shannon_team_diversity = 0
# self.simpson_task_density = 0
# self.simpson_team_density = 0
self.simpson_task_diversity = 0 # task diversity
self.simpson_team_diversity = 0
self.gini_simpson_task_diversity = 0 # task diversity
self.gini_simpson_team_diversity = 0
def __str__(self):
pass
def get_heading(self):
heading = ""
heading += "Task_size"
heading += "\t" + "Processing_time"
heading += "\t" + "Cardinality"
heading += "\t" + "Radius"
heading += "\t" + "Diameter"
heading += "\t" + "Leader_distance"
heading += "\t" + "Leader_skill_distance"
heading += "\t" + "Sum_distance"
# heading += "\t" + "Shannon_task"
# heading += "\t" + "Shannon_team"
# # heading += "\t" + "task density"
# # heading += "\t" + "team density"
# heading += "\t" + "Simpson_task" # task diversity
# heading += "\t" + "Simpson_team"
# heading += "\t" + "Gini-Simpson_task" # task diversity
# heading += "\t" + "Gini-Simpson_team"
return heading
def main_run(algori):
import networkx as nx
year = "2015"
# for network in ["db"]:
results = Results()
# , "sigmod", "icde", "icdt", "edbt", "pods", "www", "kdd", "sdm", "pkdd", "icdm", "icml",
# "ecml", "colt", "uai", "soda", "focs", "stoc", "stacs", "db", "dm", "ai", "th", "dblp"
networks = ["dblp"]
for network in tqdm(networks):
print(network)
graph = nx.read_gml("../dblp-" + year + "/" + network + ".gml")
# skills_name_id_dict = dict()
# with open("../dblp-" + year + "/" + network + "-titles.txt") as file:
runs = 10
tot_tasks = 170
open("../dblp-" + year + "/" + network + "-" + str(tot_tasks) + "-0-" + algori + "-results.txt", "w").close()
heading = results.get_heading()
open("../dblp-" + year + "/" + network + "-" + str(tot_tasks) + "-0-" + algori + "-results.txt", "a").write(
heading + "\n")
open("../dblp-" + year + "/" + network + "-" + str(tot_tasks) + "-0-" + algori + "-teams.txt", "w").close()
with open("../dblp-" + year + "/" + network + "-" + str(tot_tasks) + "-0.txt", "r") as file:
n_lines = utilities.get_num_lines("../dblp-" + year + "/" + network + "-" + str(tot_tasks) + "-0.txt")
crun = 0 # cu
for line in tqdm(file, total=n_lines):
crun += 1
# task = dblp_data.get_task_from_title_graph(graph, line.strip("\n").split("\t")[1])
task = line.strip("\n").split()
# print(task)
record = ""
start_time = time.time()
team = Algorithms.rarestfirst(graph, task)
end_time = time.time()
tg = team.get_team_graph(graph)
# show_graph(tg)
results.task_size += len(task)
results.tot_time += end_time - start_time
results.cardinality += team.cardinality()
results.radius += team.radius(tg)
results.diameter += team.diameter(tg)
results.leader_distance += team.leader_distance(tg)
results.leader_skill_distance += team.leader_skill_distance(tg, task)
results.sum_distance += team.sum_distance(tg, task)
# results.shannon_task_diversity += team.shannon_task_diversity(graph)
# results.shannon_team_diversity += team.shannon_team_diversity(graph)
# results.simpson_task_diversity += team.simpson_diversity(graph, False) # task diversity
# results.simpson_team_diversity += team.simpson_diversity(graph, True)
# results.gini_simpson_task_diversity += team.gini_simpson_diversity(graph, False) # task diversity
# results.gini_simpson_team_diversity += team.gini_simpson_diversity(graph, True)
open("../dblp-" + year + "/" + network + "-" + str(tot_tasks) + "-0-" + algori +
"-teams.txt", "a").write(",".join(sorted(team.experts)) + "\n")
if crun % runs == 0:
record += str(results.task_size / runs)
record += "\t" + str(round(results.tot_time / runs, 3))
record += "\t" + str(results.cardinality / runs)
record += "\t" + str(results.radius / runs)
record += "\t" + str(results.diameter / runs)
record += "\t" + str(results.leader_distance / runs)
record += "\t" + str(results.leader_skill_distance / runs)
record += "\t" + str(results.sum_distance / runs)
# record += "\t" + str(results.shannon_task_diversity / runs)
# record += "\t" + str(results.shannon_team_diversity / runs)
# # record += "\t" + str(team.simpson_task_density(graph))
# # record += "\t" + str(team.simpson_team_density(graph))
# record += "\t" + str(results.simpson_task_diversity / runs) # task diversity
# record += "\t" + str(results.simpson_team_diversity / runs)
# record += "\t" + str(results.gini_simpson_task_diversity / runs) # task diversity
# record += "\t" + str(results.gini_simpson_team_diversity / runs)
open("../dblp-" + year + "/" + network + "-" + str(tot_tasks) + "-0-" + algori + "-results.txt",
"a").write(
record + "\n")
results.clean_it()
def multiprocessing_func(algo):
main_run(algo)
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
import time
begin_time = time.time()
main_run("rfs")
# processes = []
# for alg in ["rfs"]:
# p = multiprocessing.Process(target=multiprocessing_func, args=(alg,))
# processes.append(p)
# p.start()
# for process in processes:
# process.join()
tqdm.write('Time taken = {} seconds'.format(time.time() - begin_time))