-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTeam.py
292 lines (267 loc) · 10.2 KB
/
Team.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
class Team:
def __init__(self):
self.experts = set()
self.expert_skills = dict() # dictionary of list of skills representing by an expert to the Team
self.leader = ""
self.task = set()
self.random_experts = set()
def get_detailed_record(self):
pass
def is_formed(self):
all_skills = set()
for expert in self.expert_skills:
all_skills.update(set(self.expert_skills[expert]))
return len(all_skills) == len(self.task)
def __str__(self): # real signature unknown
""" Return str(self). """
if len(self.experts) == 0:
return "Team Not Yet Formed"
else:
return ":".join(self.experts)
def clean_it(self):
self.experts = set()
self.expert_skills = dict() # dictionary of list of skills representing by an expert to the Team
self.leader = ""
self.task = set()
self.random_experts = set()
def cardinality(self):
return len(self.experts)
def get_leader_team_graph(self, l_graph):
"""
return graph formed by team
:param l_graph:
:return:
"""
nodes = set()
nodes.add(self.leader)
import networkx as nx
for nd1 in self.experts:
if nd1 != self.leader:
if nx.has_path(l_graph, nd1, self.leader):
for node in nx.dijkstra_path(l_graph, nd1, self.leader):
nodes.add(node)
return l_graph.subgraph(nodes).copy()
def get_team_graph(self, l_graph):
"""
return graph formed by team
:param l_graph:
:return:
"""
nodes = set()
nodes.add(self.leader)
import networkx as nx
for nd1 in self.experts:
for nd2 in self.experts:
if nd1 != nd2:
if nx.has_path(l_graph, nd1, nd2):
for node in nx.dijkstra_path(l_graph, nd1, nd2):
nodes.add(node)
return l_graph.subgraph(nodes).copy()
def diameter(self, l_graph) -> float:
"""
return diameter of graph formed by team
diam(X) := max{sp_{X}(u,v) | u,v ∈ X}.
:param l_graph:
:return:
"""
import networkx as nx
t_graph = self.get_team_graph(l_graph)
if nx.number_of_nodes(t_graph) < 2:
return 0
else:
sp = dict()
for nd in t_graph.nodes:
sp[nd] = nx.single_source_dijkstra_path_length(t_graph, nd)
e = nx.eccentricity(t_graph, sp=sp)
return round(nx.diameter(t_graph, e), 2)
def radius(self, l_graph) -> float:
"""
return diameter of graph formed by team
:param l_graph:
:return:
"""
import networkx as nx
import matplotlib.pyplot as plt
t_graph = self.get_team_graph(l_graph)
if nx.number_of_nodes(t_graph) < 2:
return 0
else:
shp = dict()
for nd in t_graph.nodes:
shp[nd] = nx.single_source_dijkstra_path_length(t_graph, nd)
try:
eccent = nx.eccentricity(t_graph, sp=shp)
except TypeError as eccent:
nx.draw_circular(t_graph, with_labels=True)
plt.show()
msg = "Found infinite path length because the graph is not" " connected"
raise nx.NetworkXError(msg) from eccent
return round(nx.radius(t_graph, eccent), 2)
def sum_distance(self, l_graph, task) -> float:
"""
returns sum of pair wise skills distance of task
:param l_graph:
:param task:
:return:
"""
import networkx as nx
# from Team import Team
sd = 0
expert_i = expert_j = ""
for skill_i in task:
for skill_j in task:
if skill_i != skill_j:
for member in self.experts:
if member in self.expert_skills and skill_i in self.expert_skills[member]:
expert_i = member
if member in self.expert_skills and skill_j in self.expert_skills[member]:
expert_j = member
if expert_i in l_graph and expert_j in l_graph and nx.has_path(l_graph, expert_i, expert_j):
sd += nx.dijkstra_path_length(l_graph, expert_i, expert_j, weight="cc")
sd /= 2
return round(sd, 3)
def leader_skill_distance(self, l_graph, l_task) -> float:
"""
return leader skill distance of team i.e. (skills of leader, skill responsible team_member) pairs
:param l_graph:
:param l_task:
:return:
"""
import networkx as nx
# from Team import Team
ld = 0
if len(self.experts) < 2:
return 0
else:
for skill in l_task:
for member in self.experts:
if member != self.leader and skill in self.expert_skills[member]:
if nx.has_path(l_graph, self.leader, member):
ld += nx.dijkstra_path_length(l_graph, self.leader, member, weight="cc")
return round(ld, 3)
def leader_distance(self, l_graph) -> float:
"""
return leader distance of team i.e. (leader, team_member) pairs
:param l_graph:
:return:
"""
import networkx as nx
ld = 0
if len(self.experts) < 2:
return 0
else:
for member in self.experts:
if member != self.leader:
if nx.has_path(l_graph, self.leader, member):
ld += nx.dijkstra_path_length(l_graph, self.leader, member, weight="cc")
return round(ld, 3)
def shannon_team_diversity(self, l_graph):
"""
returns Shannon entropy
:param l_graph:
:return:
"""
import math
shannon_sum = 0
tot_skls = set()
for expert in self.experts:
tot_skls.update(set(l_graph.nodes[expert]["skills"].split(",")))
for skill in tot_skls:
cn = 0
for expert in self.experts:
if skill in l_graph.nodes[expert]["skills"].split(","):
cn += 1
prob = cn / len(self.experts)
shannon_sum += prob * math.log(prob)
return round(((-1 * shannon_sum) / len(tot_skls)), 5)
def shannon_task_diversity(self, l_graph):
"""
returns Shannon entropy
:param l_graph:
:return:
"""
import math
shannon_sum = 0
for skill in self.task:
cn = 0
for expert in self.experts:
if skill in l_graph.nodes[expert]["skills"].split(","):
cn += 1
prob = cn / len(self.experts)
shannon_sum += (prob * math.log(prob))
return round(((-1 * shannon_sum) / len(self.task)), 5)
def simpson_task_density(self, l_graph):
"""
calculates reciprocal simpson diversity
:return:
"""
simpson_sum = 0
for skill in self.task:
cn = 0
for expert in self.experts:
if skill in l_graph.nodes[expert]["skills"].split(","):
cn += 1
prob = cn / len(self.experts)
simpson_sum += pow(prob, 5)
return round(simpson_sum / len(self.task), 5)
def simpson_team_density(self, l_graph):
"""
calculates reciprocal simpson diversity
:return:
"""
simpson_sum = 0
tot_skls = set()
for node in self.experts:
tot_skls.update(set(l_graph.nodes[node]["skills"].split(",")))
for skill in tot_skls:
cn = 0
for expert in self.experts:
if skill in l_graph.nodes[expert]["skills"].split(","):
cn += 1
prob = cn / len(self.experts)
simpson_sum += pow(prob, 5)
return round(simpson_sum / len(tot_skls), 5)
def simpson_diversity(self, l_graph, bool_team):
if self.simpson_team_density(l_graph) == 0 or self.simpson_task_density(l_graph) == 0 :
return 100000 # infinity
else:
if bool_team:
return round(1 / (self.simpson_team_density(l_graph)), 5)
else:
return round(1 / (self.simpson_task_density(l_graph)), 5)
def gini_simpson_diversity(self, l_graph, bool_team):
if self.simpson_team_density(l_graph) == 0 or self.simpson_task_density(l_graph) == 0 :
return 100000 # infinity
else:
if bool_team:
return round(1 - (self.simpson_team_density(l_graph)), 5)
else:
return round(1 - (self.simpson_task_density(l_graph)), 5)
def similarity_teams():
year = "2015"
network = "vldb"
algori1 = "rfs"
algori2 = "bsd"
with open("../dblp-" + year + "/" + network + "-17-tasks-0-" + algori1 + "-teams.txt", "r") as file1, \
open("../dblp-" + year + "/" + network + "-17-tasks-0-" + algori2 + "-teams.txt", "r") as file2:
for line1, line2 in zip(file1, file2):
experts1 = set(line1.strip("\n").split(","))
experts2 = set(line2.strip("\n").split(","))
print(",".join(sorted(experts2.intersection(experts1))) + " | " +
",".join(sorted(experts1.difference(experts2))) + " | " +
",".join(sorted(experts2.difference(experts1))))
print(str(len(experts2.intersection(experts1))) + " | " +
str(len(experts1.difference(experts2))) + " | " +
str(len(experts2.difference(experts1))))
if __name__ == "__main__":
year = "2015"
network = "vldb"
import networkx as nx
graph = nx.read_gml("../dblp-" + year + "/" + network + ".gml")
from Team import Team
team = Team()
print(team.get_diameter_nodes(graph))
# print("memory required in bytes : " + str(team.__sizeof__())) # sizeof
# print("memory required in bytes with overhead : " + str(sys.getsizeof(team))) # sizeof with overhead
# print("string " + team.__str__())
# print("cardinality " + str(team.cardinality()))