-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathsiamese_test.py
executable file
·198 lines (148 loc) · 6.51 KB
/
siamese_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader,Dataset
import matplotlib.pyplot as plt
import torchvision.utils
import numpy as np
import random
from PIL import Image
import torch
from torch.autograd import Variable
import PIL.ImageOps
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
from siamese_dataloader import *
from siamese_net import *
from scipy.stats import multivariate_normal
from tqdm import tqdm
class Config():
training_dir = "/media/ADAS1/MARS/bbox_train/bbox_train/"
testing_dir = "/media/ADAS1/MARS/dummy_test_set/bbox_test/"
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize((128,128)),
torchvision.transforms.ToTensor()
])
def get_gaussian_mask():
#128 is image size
x, y = np.mgrid[0:1.0:128j, 0:1.0:128j]
xy = np.column_stack([x.flat, y.flat])
mu = np.array([0.5,0.5])
sigma = np.array([0.22,0.22])
covariance = np.diag(sigma**2)
z = multivariate_normal.pdf(xy, mean=mu, cov=covariance)
z = z.reshape(x.shape)
z = z / z.max()
z = z.astype(np.float32)
mask = torch.from_numpy(z)
return mask
class Siamese_Triplet_Test(Dataset):
def __init__(self,imageFolderDataset,transform=None,should_invert=True):
self.imageFolderDataset = imageFolderDataset
self.transform = transform
self.should_invert = should_invert
def __getitem__(self,index):
# Get a random image which will be used as an anchor
img0_tuple = random.choice(self.imageFolderDataset.imgs)
# img0_tuple = (img_path, class_id)
negative_images = set()
while len(negative_images) < 32:
# keep looping till a different class image is found [Negative image]
img1_tuple = random.choice(self.imageFolderDataset.imgs)
if img0_tuple[1] == img1_tuple[1]:
# Comparing class_id, if same as anchor image, this won't use used as a positive image
continue
else:
# If class id is different than anchor image, this will be used as a negative image
negative_images.update([img1_tuple[0]]) # Keeping the image_path of negative images
negative_images = list(negative_images)
# Getting anchor image and class name
anchor_image_name = img0_tuple[0].split('/')[-1]
anchor_class_name = img0_tuple[0].split('/')[-2]
# Getting all the images which belong to the same class as anchor image.
all_files_in_class = glob.glob(self.imageFolderDataset.root+anchor_class_name+'/*')
# Only those images which belong to the same class as anchor image but isn't anchor image will
# be selected as a candidate for positive sample
all_files_in_class = [x for x in all_files_in_class if x!=img0_tuple[0]]
if len(all_files_in_class)==0:
# If there is no image (other than anchor image) belonging to the anchor image class, anchor
# image will be taken as positive sample
positive_image = img0_tuple[0]
else:
# Choose random image (of same class as anchor image) as positive sample
positive_image = random.choice(all_files_in_class)
if anchor_class_name != positive_image.split('/')[-2]:
print("Error") # Checking if the class of both anchor and positive image is same
anchor = Image.open(img0_tuple[0])
#negative = Image.open(img1_tuple[0])
positive = Image.open(positive_image)
anchor = anchor.convert("RGB")
#negative = negative.convert("RGB")
positive = positive.convert("RGB")
if self.should_invert:
anchor = PIL.ImageOps.invert(anchor)
positive = PIL.ImageOps.invert(positive)
#negative = PIL.ImageOps.invert(negative)
if self.transform is not None:
anchor = self.transform(anchor)
positive = self.transform(positive)
#negative = self.transform(negative)
# Multiple negative samples for each anchor-positive pair will be parsed
negs = []
for i in range(len(negative_images)):
neg_image = Image.open(negative_images[i])
if self.should_invert:
neg_image = PIL.ImageOps.invert(neg_image)
if self.transform is not None:
neg_image = self.transform(neg_image)
negs.append(neg_image)
negatives = torch.squeeze(torch.stack(negs))
return anchor, positive, negatives
def __len__(self):
return len(self.imageFolderDataset.imgs)
folder_dataset_test = dset.ImageFolder(root=Config.testing_dir) # PyTorch object of image dataset dir
siamese_dataset = Siamese_Triplet_Test(imageFolderDataset=folder_dataset_test,transform=transforms,should_invert=False) # Initializing data parser class
test_dataloader = DataLoader(siamese_dataset,num_workers=12,batch_size=1,shuffle=False) # PyTorch data parser obeject
dataiter = iter(test_dataloader) # PyTorch data iterator
x0,_,_ = next(dataiter) # NOT SURE WHY THIS HAS BEEN DONE
net = torch.load('ckpts/model640.pt').cuda()
net.eval()
correct = 0
total_correct = 0
total = len(siamese_dataset)
print("Total testing images:", total)
gaussian_mask = get_gaussian_mask().cuda() # Only triplet_model 1024 has gaussian mask.
for i in tqdm(range(total-1)):
anc,pos, negatives = next(dataiter) # Parse the data and get next sample
# print(i)
batch_correct = 0
negatives = torch.squeeze(negatives)
for j in range(len(negatives)): # Iterate over multiple negative samples
neg = negatives[j]
neg = neg.unsqueeze(0)
concatenated = torch.cat((anc,pos,neg),0) # Creating a [anchor, positive, negative] sample to be passed onto the model for testing
output1, output2, output3 = net(Variable(anc).cuda()*gaussian_mask, Variable(pos).cuda()*gaussian_mask, Variable(neg).cuda()*gaussian_mask)
## Added to make shapes from 1024,3 to 1024x3 ##
output1 = torch.flatten(output1)
output2 = torch.flatten(output2)
output3 = torch.flatten(output3)
## Added to make shapes from 1024,3 to 1024x3 ##
output1 = torch.unsqueeze(output1,0) #anc
output2 = torch.unsqueeze(output2,0) #pos
output3 = torch.unsqueeze(output3,0) #neg
# print(output1.shape, output2.shape, output3.shape)
d1 = F.cosine_similarity(x1=output1, x2=output2) #anc - pos
d2 = F.cosine_similarity(x1=output1, x2=output3) #anc - neg
# print(d1.shape, d2.shape)
#if abs(d1 - d2) > 0.5:
if d1 > d2: # Original Implementation
batch_correct+=1
#correct+=1
total_correct+=1
if batch_correct == len(negatives):
correct+=1
print('correct: ',correct)
print('completely correct batches % ',correct/(total))
print('Total correct examples: ',total_correct)
print('examplewise correct % ',total_correct/(total*len(negatives)))