diff --git a/R-package/DESCRIPTION b/R-package/DESCRIPTION index fabf5733..becd7bf5 100644 --- a/R-package/DESCRIPTION +++ b/R-package/DESCRIPTION @@ -1,8 +1,8 @@ Package: abess Type: Package Title: Fast Best Subset Selection -Version: 0.4.8 -Date: 2023-09-19 +Version: 0.4.9 +Date: 2024-09-09 Authors@R: c( person(given = "Jin", family = "Zhu", email = "zhuj37@mail2.sysu.edu.cn", role = c("aut", "cre"), comment = c(ORCID = "0000-0001-8550-5822")), person(given = "Zezhi", family = "Wang", email = "homura@mail.ustc.edu.cn", role = c("aut")), diff --git a/R-package/NEWS.md b/R-package/NEWS.md index b7c4d4e4..f3dec772 100644 --- a/R-package/NEWS.md +++ b/R-package/NEWS.md @@ -1,3 +1,8 @@ +# abess 0.4.9 +* Fix bug in Cpp level +* Fix error in: https://www.stats.ox.ac.uk/pub/bdr/clang19/abess.log +* Fix notes in https://cran.r-project.org/web/checks/check_results_abess.html + # abess 0.4.8 * Support no-intercept GLM model by param 'fit.intercept'. * Allow to restrict the range of estimation for beta by param 'beta.high' and 'beta.low'. diff --git a/R-package/R/abess.R b/R-package/R/abess.R index b6aa0513..5a5d8052 100644 --- a/R-package/R/abess.R +++ b/R-package/R/abess.R @@ -174,10 +174,10 @@ abess <- function(x, ...) UseMethod("abess") #' #' \code{abess} support some well-known advanced statistical methods to analyze data, including #' \itemize{ -#' \item{sure independent screening: } {helpful for ultra-high dimensional predictors (i.e., \eqn{p \gg n}). Use the parameter \code{screening.num} to retain the marginally most important predictors. See Fan et al (2008) for more details. } -#' \item{best subset of group selection: } {helpful when predictors have group structure. Use the parameter \code{group.index} to specify the group structure of predictors. See Zhang et al (2021) for more details. } -#' \item{\eqn{l_2} regularization best subset selection: } {helpful when signal-to-ratio is relatively small. Use the parameter \code{lambda} to control the magnitude of the regularization term.} -#' \item{nuisance selection: } {helpful when the prior knowledge of important predictors is available. Use the parameter \code{always.include} to retain the important predictors.} +#' \item sure independent screening: helpful for ultra-high dimensional predictors (i.e., \eqn{p \gg n}). Use the parameter \code{screening.num} to retain the marginally most important predictors. See Fan et al (2008) for more details. +#' \item best subset of group selection: helpful when predictors have group structure. Use the parameter \code{group.index} to specify the group structure of predictors. See Zhang et al (2021) for more details. +#' \item \eqn{l_2} regularization best subset selection: helpful when signal-to-ratio is relatively small. Use the parameter \code{lambda} to control the magnitude of the regularization term. +#' \item nuisance selection: helpful when the prior knowledge of important predictors is available. Use the parameter \code{always.include} to retain the important predictors. #' } #' The arbitrary combination of the four methods are definitely support. #' Please see [online vignettes](https://abess-team.github.io/abess/articles/v07-advancedFeatures.html) for more details about the advanced features support by \code{abess}. diff --git a/R-package/R/coef.abesspca.R b/R-package/R/coef.abesspca.R index 7c5f066f..34c74954 100644 --- a/R-package/R/coef.abesspca.R +++ b/R-package/R/coef.abesspca.R @@ -9,12 +9,12 @@ #' the coefficient fitted at given \code{support.size}. #' If \code{support.size = NULL}, then all coefficients would be returned. #' Default: \code{support.size = NULL}. -#' This parameter is omitted if {sparse.type = "kpc"}. +#' This parameter is omitted if \code{sparse.type = "kpc"}. #' @param kpc An integer vector specifies #' the coefficient fitted at given principal component. #' If \code{kpc = NULL}, then all coefficients would be returned. #' Default: \code{kpc = NULL}. -#' This parameter is omitted if {sparse.type = "fpc"}. +#' This parameter is omitted if \code{sparse.type = "fpc"}. #' #' @param sparse A logical value, specifying whether the coefficients should be #' presented as sparse matrix or not. Default: \code{sparse = TRUE}. diff --git a/R-package/R/generate.data.R b/R-package/R/generate.data.R index fcbde084..a1a2c0d9 100644 --- a/R-package/R/generate.data.R +++ b/R-package/R/generate.data.R @@ -22,7 +22,7 @@ #' where the covariance matrix has \eqn{(i,j)} entry equals \eqn{I(i \neq j)}. #' \code{cortype = 2} denotes the exponential structure, #' where the covariance matrix has \eqn{(i,j)} entry equals \eqn{rho^{|i-j|}}. -#' code{cortype = 3} denotes the constant structure, +#' \code{cortype = 3} denotes the constant structure, #' where the non-diagonal entries of covariance #' matrix are \eqn{rho} and diagonal entries are 1. #' @param snr A numerical value controlling the signal-to-noise ratio (SNR). The SNR is defined as diff --git a/R-package/cran-comments.md b/R-package/cran-comments.md index 6ab5f2b9..af5a2dc1 100644 --- a/R-package/cran-comments.md +++ b/R-package/cran-comments.md @@ -1,7 +1,3 @@ -## Comment - -`abess` is remove from CRAN because incorrect C++ flags in configure scripts. This submission has address this incorrectness. - ## Test environments * local R installation, R 4.1.0 * win-builder (devel) diff --git a/R-package/man/abess.Rd b/R-package/man/abess.Rd index 96a4143a..afe01dbf 100644 --- a/R-package/man/abess.Rd +++ b/R-package/man/abess.Rd @@ -257,10 +257,10 @@ Again, we suggest to use the default values unchanged because the same reason fo \code{abess} support some well-known advanced statistical methods to analyze data, including \itemize{ -\item{sure independent screening: } {helpful for ultra-high dimensional predictors (i.e., \eqn{p \gg n}). Use the parameter \code{screening.num} to retain the marginally most important predictors. See Fan et al (2008) for more details. } -\item{best subset of group selection: } {helpful when predictors have group structure. Use the parameter \code{group.index} to specify the group structure of predictors. See Zhang et al (2021) for more details. } -\item{\eqn{l_2} regularization best subset selection: } {helpful when signal-to-ratio is relatively small. Use the parameter \code{lambda} to control the magnitude of the regularization term.} -\item{nuisance selection: } {helpful when the prior knowledge of important predictors is available. Use the parameter \code{always.include} to retain the important predictors.} +\item sure independent screening: helpful for ultra-high dimensional predictors (i.e., \eqn{p \gg n}). Use the parameter \code{screening.num} to retain the marginally most important predictors. See Fan et al (2008) for more details. +\item best subset of group selection: helpful when predictors have group structure. Use the parameter \code{group.index} to specify the group structure of predictors. See Zhang et al (2021) for more details. +\item \eqn{l_2} regularization best subset selection: helpful when signal-to-ratio is relatively small. Use the parameter \code{lambda} to control the magnitude of the regularization term. +\item nuisance selection: helpful when the prior knowledge of important predictors is available. Use the parameter \code{always.include} to retain the important predictors. } The arbitrary combination of the four methods are definitely support. Please see \href{https://abess-team.github.io/abess/articles/v07-advancedFeatures.html}{online vignettes} for more details about the advanced features support by \code{abess}. diff --git a/R-package/man/coef.abesspca.Rd b/R-package/man/coef.abesspca.Rd index a300f9fb..b8b58424 100644 --- a/R-package/man/coef.abesspca.Rd +++ b/R-package/man/coef.abesspca.Rd @@ -13,13 +13,13 @@ the coefficient fitted at given \code{support.size}. If \code{support.size = NULL}, then all coefficients would be returned. Default: \code{support.size = NULL}. -This parameter is omitted if {sparse.type = "kpc"}.} +This parameter is omitted if \code{sparse.type = "kpc"}.} \item{kpc}{An integer vector specifies the coefficient fitted at given principal component. If \code{kpc = NULL}, then all coefficients would be returned. Default: \code{kpc = NULL}. -This parameter is omitted if {sparse.type = "fpc"}.} +This parameter is omitted if \code{sparse.type = "fpc"}.} \item{sparse}{A logical value, specifying whether the coefficients should be presented as sparse matrix or not. Default: \code{sparse = TRUE}.} diff --git a/R-package/man/generate.data.Rd b/R-package/man/generate.data.Rd index 1182ace9..19f0ee6b 100644 --- a/R-package/man/generate.data.Rd +++ b/R-package/man/generate.data.Rd @@ -48,7 +48,7 @@ If it is supplied, \code{support.size} would be omitted.} where the covariance matrix has \eqn{(i,j)} entry equals \eqn{I(i \neq j)}. \code{cortype = 2} denotes the exponential structure, where the covariance matrix has \eqn{(i,j)} entry equals \eqn{rho^{|i-j|}}. -code{cortype = 3} denotes the constant structure, +\code{cortype = 3} denotes the constant structure, where the non-diagonal entries of covariance matrix are \eqn{rho} and diagonal entries are 1.}