Calculates the precision of the query classification.
Inherits From: ClassificationMetric
, ABC
TFSimilarity.classification_metrics.Precision(
name: str = precision
) -> None
Computes the precision given the query classification counts.
args: name: Name associated with a specific metric object, e.g., [email protected]
Usage with tf.similarity.models.SimilarityModel():
model.calibrate(x=query_examples,
y=query_labels,
calibration_metric='precision')
compute(
tp: <a href="../../TFSimilarity/callbacks/FloatTensor.md">TFSimilarity.callbacks.FloatTensor```
</a>,
fp: <a href="../../TFSimilarity/callbacks/FloatTensor.md">TFSimilarity.callbacks.FloatTensor```
</a>,
tn: <a href="../../TFSimilarity/callbacks/FloatTensor.md">TFSimilarity.callbacks.FloatTensor```
</a>,
fn: <a href="../../TFSimilarity/callbacks/FloatTensor.md">TFSimilarity.callbacks.FloatTensor```
</a>,
count: int
) -> <a href="../../TFSimilarity/callbacks/FloatTensor.md">TFSimilarity.callbacks.FloatTensor```
</a>
Compute the classification metric.
The compute() method supports computing the metric for a set of values, where each value represents the counts at a specific distance threshold.
Args | |
---|---|
tp | A 1D FloatTensor containing the count of True Positives at each distance threshold. |
fp | A 1D FloatTensor containing the count of False Positives at each distance threshold. |
tn | A 1D FloatTensor containing the count of True Negatives at each distance threshold. |
fn | A 1D FloatTensor containing the count of False Negatives at each distance threshold. |
count | The total number of queries |
Returns | |
---|---|
A 1D FloatTensor containing the metric at each distance threshold. |
get_config()