forked from MohamedMandouh/Pacman-Search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
189 lines (147 loc) · 5.85 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem):
"""
Search the deepest nodes in the search tree first.
Your search algorithm needs to return a list of actions that reaches the
goal. Make sure to implement a graph search algorithm.
To get started, you might want to try some of these simple commands to
understand the search problem that is being passed in:
print "Start:", problem.getStartState()
print "Is the start a goal?", problem.isGoalState(problem.getStartState())
print "Start's successors:", problem.getSuccessors(problem.getStartState())
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def breadthFirstSearch(problem):
"""Search the shallowest nodes in the search tree first."""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def uniformCostSearch(problem):
"""Search the node of least total cost first."""
pq = util.PriorityQueue()
startState = problem.getStartState()
pq.push(("", None, startState), 0)
# moves[state] returns (dir, parent) the direction and the parent from which this state was reached
moves = {}
# Current cost to reach this state
stateCost = {startState: 0}
goalState = None
while not pq.isEmpty():
(move, parent, currentState) = pq.pop()
if currentState in moves: # already visited
continue
moves[currentState] = (move, parent)
if problem.isGoalState(currentState): # Found goal state
goalState = currentState
break
children = problem.getSuccessors(currentState)
for successor, action, cost in children:
if successor not in stateCost or stateCost[successor] > stateCost[currentState] + cost:
pq.push((action, currentState, successor), stateCost[currentState] + cost)
stateCost[successor] = stateCost[currentState] + cost
currentState = goalState
path = []
while currentState != startState:
(move, parent) = moves[currentState]
path.append(move)
currentState = parent
path.reverse()
return path
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
"""Search the node that has the lowest combined cost and heuristic first."""
pq = util.PriorityQueue()
start = problem.getStartState()
pq.push(start,heuristic(start,problem))
cost_so_far = {}
cost_so_far[start] = 0
came_from = {}
came_from[start] = (None,None)
actions =[]
while not pq.isEmpty() :
current=pq.pop()
if problem.isGoalState(current) :
break
neighbours = problem.getSuccessors(current)
for (next,action,cost) in neighbours :
new_cost = cost_so_far[current] + cost
if next not in cost_so_far or new_cost < cost_so_far[next] :
cost_so_far[next] = new_cost
priority = new_cost + heuristic(next,problem)
pq.push(next, priority)
came_from[next] = (current,action)
# exiting the while loop when current == goalstate , now time to trace back !
while current != start :
parent,action = came_from[current]
actions.append(action)
current = parent
actions.reverse()
return actions
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch