forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatic_model.py
100 lines (80 loc) · 3.88 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
from net import AutoInt
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.is_distributed = False
self.distributed_embedding = False
if self.config.get("hyper_parameters.distributed_embedding", 0) == 1:
self.distributed_embedding = True
self.feature_number = self.config.get(
"hyper_parameters.feature_number")
self.embedding_dim = self.config.get("hyper_parameters.embedding_dim")
self.fc_sizes = self.config.get("hyper_parameters.fc_sizes")
self.use_residual = self.config.get("hyper_parameters.use_residual")
self.scaling = self.config.get("hyper_parameters.scaling")
self.use_wide = self.config.get("hyper_parameters.use_wide")
self.use_sparse = self.config.get("hyper_parameters.use_sparse")
self.head_num = self.config.get("hyper_parameters.head_num")
self.num_field = self.config.get("hyper_parameters.num_field")
self.attn_layer_sizes = self.config.get(
"hyper_parameters.attn_layer_sizes")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
def create_feeds(self, is_infer=False):
self.label_input = paddle.static.data(
name="label", shape=[None, 1], dtype="int64")
self.feat_index = paddle.static.data(
name='feat_index', shape=[None, self.num_field], dtype='int64')
self.feat_value = paddle.static.data(
name='feat_value', shape=[None, self.num_field], dtype='float32')
feeds_list = [self.label_input, self.feat_index, self.feat_value]
return feeds_list
def net(self, input, is_infer=False):
autoint_model = AutoInt(self.feature_number, self.embedding_dim,
self.fc_sizes, self.use_residual, self.scaling,
self.use_wide, self.use_sparse, self.head_num,
self.num_field, self.attn_layer_sizes)
pred = autoint_model.forward(self.feat_index, self.feat_value)
#pred = F.sigmoid(prediction)
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
auc, batch_auc_var, _ = paddle.static.auc(input=predict_2d,
label=self.label_input,
slide_steps=0)
self.inference_target_var = auc
if is_infer:
fetch_dict = {'auc': auc}
return fetch_dict
cost = paddle.nn.functional.log_loss(
input=pred, label=paddle.cast(
self.label_input, dtype="float32"))
avg_cost = paddle.mean(x=cost)
self._cost = avg_cost
fetch_dict = {'cost': avg_cost, 'auc': auc}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
optimizer = paddle.distributed.fleet.distributed_optimizer(
optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)