forked from NVIDIA/MatX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse2dense.h
144 lines (125 loc) · 5.03 KB
/
sparse2dense.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
////////////////////////////////////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (c) 2025, NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "matx/core/type_utils.h"
#include "matx/operators/base_operator.h"
#include "matx/transforms/convert/sparse2dense_cusparse.h"
namespace matx {
namespace detail {
template <typename OpA>
class Sparse2DenseOp : public BaseOp<Sparse2DenseOp<OpA>> {
private:
typename detail::base_type_t<OpA> a_;
static constexpr int out_rank = OpA::Rank();
cuda::std::array<index_t, out_rank> out_dims_;
mutable detail::tensor_impl_t<typename OpA::value_type, out_rank> tmp_out_;
mutable typename OpA::value_type *ptr = nullptr;
public:
using matxop = bool;
using matx_transform_op = bool;
using sparse2dense_xform_op = bool;
__MATX_INLINE__ Sparse2DenseOp(const OpA &a) : a_(a) {
for (int r = 0; r < Rank(); r++) {
out_dims_[r] = a_.Size(r);
}
}
__MATX_INLINE__ std::string str() const {
return "sparse2dense(" + get_type_str(a_) + ")";
}
__MATX_HOST__ __MATX_INLINE__ auto Data() const noexcept { return ptr; }
template <typename... Is>
__MATX_INLINE__ __MATX_DEVICE__ __MATX_HOST__ decltype(auto)
operator()(Is... indices) const {
return tmp_out_(indices...);
}
static __MATX_INLINE__ constexpr __MATX_HOST__ __MATX_DEVICE__ int32_t
Rank() {
return remove_cvref_t<OpA>::Rank();
}
constexpr __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ index_t
Size(int dim) const {
return out_dims_[dim];
}
template <typename Out, typename Executor>
void Exec([[maybe_unused]] Out &&out, [[maybe_unused]] Executor &&ex) const {
if constexpr (is_sparse_tensor_v<OpA>) {
using Rtype = decltype(cuda::std::get<0>(out));
if constexpr (is_sparse_tensor_v<Rtype>) {
MATX_THROW(matxNotSupported,
"Cannot use sparse2dense for sparse output");
} else {
sparse2dense_impl(cuda::std::get<0>(out), a_, ex);
}
} else {
MATX_THROW(matxNotSupported, "Cannot use sparse2dense on dense input");
}
}
template <typename ShapeType, typename Executor>
__MATX_INLINE__ void
InnerPreRun([[maybe_unused]] ShapeType &&shape,
[[maybe_unused]] Executor &&ex) const noexcept {
static_assert(is_sparse_tensor_v<OpA>,
"Cannot use sparse2dense on dense input");
}
template <typename ShapeType, typename Executor>
__MATX_INLINE__ void PreRun([[maybe_unused]] ShapeType &&shape,
[[maybe_unused]] Executor &&ex) const noexcept {
InnerPreRun(std::forward<ShapeType>(shape), std::forward<Executor>(ex));
detail::AllocateTempTensor(tmp_out_, std::forward<Executor>(ex), out_dims_,
&ptr);
Exec(cuda::std::make_tuple(tmp_out_), std::forward<Executor>(ex));
}
template <typename ShapeType, typename Executor>
__MATX_INLINE__ void PostRun([[maybe_unused]] ShapeType &&shape,
[[maybe_unused]] Executor &&ex) const noexcept {
static_assert(is_sparse_tensor_v<OpA>,
"Cannot use sparse2dense on dense input");
matxFree(ptr);
}
};
} // end namespace detail
/**
* Convert a sparse tensor into a dense tensor.
*
* @tparam OpA
* Data type of A tensor
*
* @param A
* Sparse input tensor
*
* @return
* Dense output tensor
*/
template <typename OpA> __MATX_INLINE__ auto sparse2dense(const OpA &A) {
return detail::Sparse2DenseOp(A);
}
} // end namespace matx