-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtsp.py
394 lines (336 loc) · 13.3 KB
/
tsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# -*- coding: utf-8 -*-
import random
import math
import numpy
import matplotlib.pyplot as plt
from collections import deque
def decide_to(p):
'''
Randomly returns True/False based on probability.
Args:
p :float of [0,1]; probability of the return value being True
Returns:
True with the probability of p and False with the probability of (1-p)
'''
r = random.uniform(0, 1)
return r <= p
def mutate(ind, N):
'''
Mutates the individual ind by swapping two genomes.
Args:
ind : |N| list/numpy.array of chromosome/individual
N : length of ind
Returns:
None
'''
i = random.randrange(0, N)
j = random.randrange(0, N)
ind[i], ind[j] = ind[j], ind[i]
return
def crossover(father, mother, child1, child2, N):
'''
Performs the Order 1 Crossover and produces two children by modifying child1 and child2.
Args:
father: |N| list/numpy.array representing the father chromosome
mother: |N| list/numpy.array representing the mother chromosome
child1: |N| list/numpy.array representing the first child
child2: |N| list/numpy.array representing the second child
N: length of all the input chromosomes
Returns:
None
'''
# randomly choosing the crossover range
i = random.randrange(0, N)
j = random.randrange(0, N)
if i > j:
i, j = j, i
# keeping track of the exact intervals
check1 = numpy.zeros(N)
check2 = numpy.zeros(N)
for x in range(i, j + 1):
child1[x] = father[x] # Redundant because child1 is initialized as the father
child2[x] = mother[x] # Redundant because child2 is initialized as the mother
check1[father[x]] = 1
check2[mother[x]] = 1
# copying the remaining genomes sequentially for child1
x = 0
index = 0 + ((i == 0) * (j + 1))
while x < N and index < N:
if not check1[mother[x]]:
child1[index] = mother[x]
index += 1
if index == i:
index = j + 1
x += 1
# copying the remaining genomes sequentially for child2
x = 0
index = 0 + ((i == 0) * (j + 1))
while x < N and index < N:
if not check2[father[x]]:
child2[index] = father[x]
index += 1
if index == i:
index = j + 1
x += 1
return
def distance(points, order, N):
'''
Computes the euclidean distance of a cycle
Args:
points : |Nx2| list/numpy.array of coordinates of points
order : |N| list/numpy.array of ordering of points (zero indexed)
Returns:
euclidean distance of points from point0 to point1 to ... pointN back to point0
Examples:
>>> distance([[0,0],[0,4],[3,4]],[0,1,2],3)
12.0
'''
x0 = points[0][0]
y0 = points[0][1]
xi = points[order[0]][0]
yi = points[order[0]][1]
s = math.sqrt((x0 - xi) ** 2 + (y0 - yi) ** 2)
for i in range(1, N):
x1 = points[order[i - 1]][0]
y1 = points[order[i - 1]][1]
x2 = points[order[i]][0]
y2 = points[order[i]][1]
s += round(math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2))
xn = points[order[N-1]][0]
yn = points[order[N-1]][1]
s = s + math.sqrt((x0 - xn) ** 2 + (y0 - yn) ** 2)
return s
def init_population(K, N):
'''
Initializes the population of K chromosomes with N genome for each chromosome by modifying pop.
Args:
K: number of chromosomes
N: number of genomes in each chromosome
Returns:
|KxN| numpy.array of K chromosomes with N genome for each
'''
pop = numpy.zeros((K, N), dtype=numpy.int32)
# each chromosome is a shuffle of sequence 1:N
seq = list(range(N))
for i in range(K):
random.shuffle(seq)
pop[i] = seq
return pop
def compute_population_fitness(pop, points, K, N):
'''
Computes the fitness for each chromosome in the population by modifying fit.
(Fitness of each chromosome is the negative of its cycle distance.)
Args:
pop: |KxN| list/numpy.array of K chromosomes with N genome for each
points: |Nx2| list/numpy.array of coordinates of points
K: number of chromosomes
N: number of genomes in each chromosome
Returns:
fit, a |K| list/numpy.array of floats where fit[k] = fitness of pop[k].
Examples:
>>> compute_population_fitness([[0,3,1,2],[2,1,0,3]],[[0,0],[0,4],[3,4],[3,0]],2,4)
array([-16., -14.])
'''
fit = numpy.zeros(K)
for k in range(K):
# fitness of each chromosome is the negative of its cycle distance
fit[k] = -distance(points, pop[k], N)
return fit
def find_cumulative_distribution(arr, K):
'''
Computes cumulative distribution (percentages) of arr.
Args:
arr: |K| numpy.array of numbers.
K: length of arr
Returns:
cd, |K| numpy.array of floats containing the cumulative distributions
where cd[i] is the probability that a uniform random number in [0,arr.sum()] is
less than arr[:i].sum()
Examples:
>>> find_cumulative_distribution(numpy.array([4,2,2]),3)
array([ 0.5 , 0.75, 1. ])
'''
cd = numpy.zeros(K)
acc = 0
s = arr.sum()
for i in range(K):
acc += arr[i] / s
cd[i] = acc
return cd
def select_parent(fitness, K):
'''
Select and index for parent based on fitness of each chromosome using the roulette wheel technique.
Args:
fitness: |K| list/numpy.array of numbers representing the fitness for each chromosome
K: length of fitness
Returns:
index of the randomly selected parent
'''
local_absolute_fitness = fitness - fitness.min() # now worst individual has fitness 0
# implementation of roulette wheel technique for choosing a random number representing
# the parent by using the cumulative probability of each element of the fitness list.
cd = find_cumulative_distribution(local_absolute_fitness, K)
roulette = random.uniform(0, 1)
ind = 0
while roulette > cd[ind]:
ind += 1
return ind
def create_new_population(pop, fitness, K, N, crossover_probability, mutation_probability):
'''
Creates a new population of K chromosomes of N genomes
by crossovers and mutations over the current population.
Args:
pop: |KxN| list/numpy.array of K chromosomes with N genome for each chromosome
representing the current population
fitness: |K| list/numpy.array of fitness of each chromosome in pop
K: number of chromosomes
N: number of genomes in each chromosome
crossover_probability: float in [0,1] representing crossover probability
mutation_probability: float in [0,1] representing mutation probability
Returns:
|KxN| list/numpy.array of K chromosomes with N genome for each chromosome
representing the new population
'''
new_pop = numpy.zeros((K, N), dtype=numpy.int32)
for k in range(K // 2): # 2 children are created in each iteration
father_ind = select_parent(fitness, K)
mother_ind = select_parent(fitness, K)
father = pop[father_ind]
mother = pop[mother_ind]
child1 = father.copy()
child2 = mother.copy()
if decide_to(crossover_probability):
crossover(father, mother, child1, child2, N)
if decide_to(mutation_probability):
mutate(child1, N)
if decide_to(mutation_probability):
mutate(child2, N)
new_pop[k * 2] = child1
new_pop[k * 2 + 1] = child2
return new_pop
def find_best_individual(pop, fitness, best_individual, best_fit):
'''
Finds the best individual and the fitness of that individual in all the generations.
Args:
pop: |KxN| list/numpy.array of K chromosomes with N genome for each
fitness: |K| list/numpy.array of numbers representing the fitness for each chromosome
best_individual: |N| list/numpy.array representing the best individual/chromosome
so far excluding the current population.
best_fit: number representing the fitness of best_individual
Returns:
{best individual so far},{fitness of best individual so far}
'''
current_best_index = fitness.argmax()
current_best_fit = fitness[current_best_index]
current_best_individual = pop[current_best_index]
if best_fit < current_best_fit:
return current_best_individual, current_best_fit
else:
return best_individual, best_fit
def read_input(path, N):
'''
Reads the first N lines of the .txt file denoted by path
containing the coordinates of the points in the following format:
x_1 y_1
x_2 y_2
...
Args:
path: string that indicates the path to the text file containing coordinates of n points
Returns:
|Nx2| numpy.array of coordinates of points
'''
points = numpy.zeros((N, 2))
file = open(path)
lines = file.readlines()
lines = [x.replace(',',' ') for x in lines]
file.close()
for i in range(N):
points[i][0], points[i][1] = map(int, lines[i].split())
return points
def plot_individual_path(individual, points, title, index):
'''
Plots individual cycle in the index of a 3x5 plot
Args:
individual: |N| list/numpy.array of a chromosome
points: |Nx2| list/numpy.array of coordinates of points
title: title of the plot
index: integer in [1,15] denoting the position of the plot in a 3x5 matplotlib subplots.
Returns:
None
'''
x = []
y = []
for i in individual:
x.append(points[i][0])
y.append(points[i][1])
x.append(x[0])
y.append(y[0])
plt.subplot(3, 5, index)
plt.title(title)
plt.xticks([], [])
plt.yticks([], [])
plt.plot(x, y, 'r*')
plt.plot(x, y, 'g--')
return
def plot_results(best_last_15, points):
'''
Plots and displays the best last 15 chromosomes generated through the generations.
Args:
best_last_15: |M| deque/list of (A,B) where A is one of the best chromosomes and B is its cycle distance
and M<=15
points: |Nx2| list/numpy.array of coordinates of points
Returns:
None
'''
for i in range(0,len(best_last_15)):
plot_individual_path(best_last_15[i][0], points, str(round(best_last_15[i][1], 2)), i+1)
plt.show()
return
def TSP_genetic(n, k, max_generation, crossover_probability, mutation_probability, path):
'''
Solves the Traveling Sales Person Problem using genetic algorithm with chromosomes decoded
as cycles (solutions) of traveling Order 1 crossover, Swap mutation, complete generation
replacement, Roulette Wheel Technique for choosing parents and negative of cycle distance for fitness.
Args:
n: integer denoting the number of points and also the number of genome of each chromosom
k: integer denoting the number of chromosomes in each population
max_generation: integer denoting the maximum generation (iterations) of the algorithm
crossover_probability: float in [0,1] denoting the crossover probability
mutation_probability: float in [0,1] denoting the mutation probability
path: string that indicates the path to the text file containing coordinates of n points
Returns:
None
'''
points = read_input(path, n)
population = init_population(k, n)
best_individual = population[0] # arbitrary choose a chromosome for initialization of best individual.
best_fitness = -distance(points, best_individual, n) # setting -distance as fitness for best individual.
old_best_fitness = best_fitness
best_last_15 = deque([], maxlen=15) # queue with fixed size of 15
for generation in range(1, max_generation + 1):
# 1. We compute the fitness of each individual in current population.
fitness = compute_population_fitness(population, points, k, n)
# 2. We obtain the best individual so far together with its fitness.
best_individual, best_fitness = find_best_individual(population, fitness, best_individual, best_fitness)
# 3. We save the best last 15 individuals for plotting
if old_best_fitness != best_fitness:
old_best_fitness = best_fitness
best_last_15.append((best_individual.copy(), -best_fitness))
# 4. We create the next generation
population = create_new_population(population, fitness, k, n, crossover_probability, mutation_probability)
# 5. Prints best distance so far
print("Generation = ", generation,'\t',"Path length = ",-best_fitness)
solution = best_individual
cycle_distance = -best_fitness
#print(cycle_distance)
#print(solution+1)
#plot_results(best_last_15, points)
return solution+1
# General Parameters
#n = 279
#k = 120
#max_generation = 500
#crossover_probability = 0.99
#mutation_probability = 0.01
#path = 'nodes.txt'
#TSP_genetic(n, k, max_generation, crossover_probability, mutation_probability, path)