-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathieee-packing.hpp
177 lines (141 loc) · 5.59 KB
/
ieee-packing.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#include <cassert>
#include <cmath>
#include <cstdio>
#include <type_traits>
namespace detail
{
// ------------------------------------------------------------------ pack-float
// F ==> floating point type
// I ==> unsigned integer type
// EXP_DIG ==> digits in the exponent.
// Should be std::numeric_limits<F>::exponent
template<typename F, int EXP_DIG> auto pack_float(const F value)
{
using I =
typename std::conditional<sizeof(F) == 8, uint64_t, uint32_t>::type;
constexpr int total_bits = sizeof(F) * 8;
constexpr int exponent_bits = EXP_DIG;
constexpr int fraction_bits = total_bits - exponent_bits - 1;
constexpr I fraction_mask = (I(1) << fraction_bits) - 1;
constexpr I exponent_mask = ~fraction_mask & ~(I(1) << (total_bits - 1));
constexpr int exponent_offset = ((1 << (exponent_bits - 1)) - 1);
constexpr int exponent_max = (1 << (EXP_DIG - 1));
constexpr int exponent_min = 2 - exponent_max;
bool sign_bit = false;
F fraction = F(0.0);
int exponent = 0;
I packed = 0;
if(!std::isfinite(value)) {
if(std::isnan(value)) {
packed = exponent_mask | (I(1) << (fraction_bits - 1));
} else {
sign_bit = std::signbit(value);
packed = exponent_mask;
if(sign_bit) packed |= (I(1) << (total_bits - 1));
}
} else {
// Unpack the value
exponent = 0;
fraction = std::frexp(value, &exponent);
if(fraction != F(0.0)) exponent -= 1;
sign_bit = std::signbit(fraction);
const bool is_denorm = exponent < exponent_min;
if(is_denorm) { // Handle denormalized numbers
while(exponent < exponent_min) {
fraction /= F(2.0);
exponent += 1;
}
}
const bool is_zero = (fraction == F(0.0));
if(is_zero) {
packed = 0; // all good
} else {
constexpr int shift = fraction_bits;
constexpr F mult = F(I(1) << shift);
auto y = F(2.0) * (sign_bit ? -fraction : fraction);
packed = I(mult * (y - I(y)));
assert(packed >= 0 and packed < (I(1) << shift));
// Remove any excess precision
packed &= fraction_mask;
// Add the exponent
I out_exp = 0;
if(!is_denorm) {
if(exponent >= exponent_max) exponent = exponent_max - 1;
if(exponent < -exponent_max + 2) exponent = -exponent_max + 2;
out_exp = (I(exponent + exponent_offset) << fraction_bits);
}
assert(out_exp == (out_exp & exponent_mask));
assert((out_exp ^ exponent_mask) != 0); // that would be infinity
packed |= out_exp;
}
// Add sign bit
if(sign_bit) packed |= (I(1) << (total_bits - 1));
}
return packed;
}
// ---------------------------------------------------------------- unpack-float
template<typename I, int EXP_DIG> auto unpack_float(const I packed)
{
using F = typename std::conditional<sizeof(I) == 8, double, float>::type;
constexpr int total_bits = sizeof(I) * 8;
constexpr int exponent_bits = EXP_DIG;
constexpr int fraction_bits = total_bits - exponent_bits - 1;
constexpr I fraction_mask = (I(1) << fraction_bits) - 1;
constexpr I sign_mask = I(1) << (total_bits - 1);
constexpr I exponent_mask = ~fraction_mask & ~sign_mask;
constexpr int exponent_offset = ((1 << (exponent_bits - 1)) - 1);
const bool sign_bit = (packed & sign_mask) != 0;
// infinity and NAN
const bool is_finite = ((packed & exponent_mask) ^ exponent_mask) != 0;
if(!is_finite) {
if((packed & fraction_mask) != 0)
return std::numeric_limits<F>::quiet_NaN();
else if(!sign_bit)
return std::numeric_limits<F>::infinity();
else
return -std::numeric_limits<F>::infinity();
}
// Onto finite values
int exponent0 = ((packed & exponent_mask) >> fraction_bits);
int exponent = exponent0 - exponent_offset;
const bool is_denorm = (exponent0 == 0);
// Handle 0.0 and -0.0
if(exponent0 == 0 and (packed & fraction_mask) == 0)
return sign_bit ? -F(0.0) : F(0.0);
// Handle 1.0 and -1.0
if(exponent == 0 and !is_denorm) return sign_bit ? -F(1.0) : F(1.0);
const I packed_fraction0 = (packed & fraction_mask) << (exponent_bits + 1);
constexpr int shift = fraction_bits;
constexpr I shift_mask = ((I(1) << shift) - 1) << (total_bits - shift);
constexpr F mult = F(I(1) << shift);
constexpr F div = F(1.0) / mult;
auto frac_int = I((packed_fraction0 & shift_mask) >> (total_bits - shift));
F fraction = F(0.5) * (F(frac_int) * div + (is_denorm ? F(0.0) : F(1.0)));
F out = std::ldexp(fraction, exponent + 1);
return sign_bit ? -out : out;
}
} // namespace detail
template<typename F> auto pack_float(F x)
{
using I = typename std::conditional_t<sizeof(F) == 8, uint64_t, uint32_t>;
#ifdef __STDC_IEC_559__
return *reinterpret_cast<I*>(&x);
#else
if constexpr(sizeof(F) == 8) return detail::pack_float<F, 11>(x);
return detail::pack_float<F, 8>(x);
#endif
}
template<typename I> auto unpack_float(I x)
{
using F = typename std::conditional_t<sizeof(I) == 8, double, float>;
#ifdef __STDC_IEC_559__
return *reinterpret_cast<F*>(&x);
#else
if constexpr(sizeof(F) == 8) return detail::unpack_float<F, 11>(x);
return detail::unpack_float<T, 8>(x);
#endif
}
inline uint32_t pack_f32(float x) { return pack_float(x); }
inline uint64_t pack_f64(double x) { return pack_float(x); }
inline float unpack_f32(uint32_t x) { return unpack_float(x); }
inline double unpack_f64(uint64_t x) { return unpack_float(x); }