-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSC.py
73 lines (52 loc) · 1.63 KB
/
SC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import csv
with open('spam.csv','r') as EmailData:
OrganisedData = list(csv.reader(EmailData))
def RemoveDuplicate(Message):
BlankList = []
for Word in Message:
if len(Word) > 1:
SplittedSentence = Word.split()
else:
SplittedSentence = Word
for SingleWord in SplittedSentence:
if SingleWord not in BlankList:
BlankList.append(SingleWord)
return BlankList
#print(OrganisedData)
WordsWithoutRepeat = []
for i in range(1,len(OrganisedData)):
WordsWithoutRepeat.append(RemoveDuplicate(OrganisedData[i][1:len(OrganisedData[i])]))
WordVector = []
for SplittedMessage in WordsWithoutRepeat:
for Word in SplittedMessage:
if Word not in WordVector:
WordVector.append(Word)
def WordCount(Word):
Counter = 0
for SplittedMessage in WordsWithoutRepeat:
if Word in SplittedMessage:
Counter += 1
return Word, Counter
BagOfWords = {}
for Word in WordVector:
Key, Value = WordCount(Word)
BagOfWords[Key] = Value
BlanList = []
BlanList = BagOfWords.values()
slist=[]
hlist=[]
for i in range(1,5573):
if OrganisedData[i][0] == "ham":
hlist.append(OrganisedData[i])
else:
slist.append(OrganisedData[i])
#Trainig Data For Classifer
Trainig_Ham_Data = hlist[0:4775]
Trainig_Spam_Data = slist[0:697]
Len_Trainig_Data = len(Trainig_Ham_Data) + len(Trainig_Spam_Data)
P_Cap = []
for i in range(0,len(BlanList)):
ans = BlanList[i] / float(Len_Trainig_Data)
P_Cap.append(ans)
print (P_Cap)
#conditional probablity