This document is used to list steps of reproducing TensorFlow Intel® Neural Compressor tuning zoo result of Transformer-LT. This example can run on Intel CPUs and GPUs.
# Install Intel® Neural Compressor
pip install neural-compressor
pip install intel-tensorflow
Note: Supported Tensorflow Version.
Intel Extension for Tensorflow is mandatory to be installed for quantizing the model on Intel GPUs.
pip install --upgrade intel-extension-for-tensorflow[gpu]
For any more details, please follow the procedure in install-gpu-drivers
Intel Extension for Tensorflow for Intel CPUs is experimental currently. It's not mandatory for quantizing the model on Intel CPUs.
pip install --upgrade intel-extension-for-tensorflow[cpu]
wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v2_2_0/transformer-lt-official-fp32-inference.tar.gz
tar -zxvf transformer-lt-official-fp32-inference.tar.gz
cd transformer-lt-official-fp32-inference
tar -zxvf transformer_lt_official_fp32_pretrained_model.tar.gz
Dataset is in data folder, pretrained model is in graph folder.
Run the prepare_dataset_model.sh
script located in examples/tensorflow/nlp/transformer_lt/quantization/ptq
.
cd examples/tensorflow/nlp/transformer_lt/quantization/ptq
bash prepare_dataset_model.sh
python main.py --input_graph=/path/to/fp32_graphdef.pb --inputs_file=/path/to/newstest2014.en --reference_file=/path/to/newstest2014.de --vocab_file=/path/to/vocab.txt --config=./transformer_lt.yaml --tune
This is a tutorial of how to enable transformer-lt model with Intel® Neural Compressor.
-
User specifies fp32 model, calibration dataset q_dataloader, evaluation dataset eval_dataloader and metric in tuning.metric field of model-specific yaml config file.
-
User specifies fp32 model, calibration dataset q_dataloader and a custom eval_func which encapsulates the evaluation dataset and metric by itself.
For transformer-lt, we applied the latter one because we don't have dataset and metric for transformer-lt. The task is to implement the q_dataloader and eval_func.
Below dataset class uses getitem to provide the model with input.
class Dataset(object):
def __init__(self, *args):
# initialize dataset related info here
...
def __getitem__(self, index):
data = self.batch[index]
label = self.ref_lines[index]
return data[0], label
def __len__(self):
return len(self.batch)
We evaluate the model with BLEU score, its source: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
In examples directory, there is a transformer_lt.yaml for tuning the model on Intel CPUs. The 'framework' in the yaml is set to 'tensorflow'. If running this example on Intel GPUs, the 'framework' should be set to 'tensorflow_itex' and the device in yaml file should be set to 'gpu'. The transformer_lt_itex.yaml is prepared for the GPU case. We could remove most of items and only keep mandatory item for tuning. We also implement a calibration dataloader and have evaluation field for creation of evaluation function at internal neural_compressor.
model:
name: transformer_lt
framework: tensorflow
inputs: input_tensor
outputs: model/Transformer/strided_slice_19
device: cpu # optional. default value is cpu, other value is gpu.
quantization:
calibration:
sampling_size: 500
model_wise:
weight:
granularity: per_channel
tuning:
accuracy_criterion:
relative: 0.01
exit_policy:
timeout: 0
max_trials: 100
random_seed: 9527
Here we set the input tensor and output tensors name into inputs and outputs field. In this case we calibrate and quantize the model, and use our calibration dataloader initialized from a 'Dataset' object.
After prepare step is done, we add tune code to generate quantized model.
from neural_compressor.experimental import Quantization
from neural_compressor.adaptor.tf_utils.util import write_graph
quantizer = Quantization(FLAGS.config)
ds = Dataset(FLAGS.inputs_file, FLAGS.reference_file, FLAGS.vocab_file)
quantizer.calib_dataloader = common.DataLoader(ds, collate_fn=collate_fn, batch_size=FLAGS.batch_size)
quantizer.model = common.Model(graph)
quantizer.eval_func = eval_func
q_model = quantizer.fit()
q_model.save(FLAGS.output_model)
The Intel® Neural Compressor quantizer.fit() function will return a best quantized model under time constraint.