forked from wengong-jin/abdockgen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdock_train.py
executable file
·147 lines (119 loc) · 4.98 KB
/
dock_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.data import DataLoader
import json
import csv
import math, random, sys
import numpy as np
import argparse
import os
from bindgen import *
from tqdm import tqdm
torch.set_num_threads(8)
def evaluate(model, loader, args):
model.eval()
ligand_rmsd, ab_full_rmsd = [], []
with torch.no_grad():
for batch in tqdm(loader):
batch = make_batch(batch)
out = model(*batch)
bind_X, _, bind_A, _ = batch[0]
tgt_X, tgt_A = out.handle
bind_mask = bind_A.clamp(max=1).float()
tgt_mask = tgt_A.clamp(max=1).float()
idx1, idx2, idx3 = torch.nonzero(bind_mask, as_tuple=True)
rmsd = compute_rmsd_no_align(
out.bind_X[:, :, 1], bind_X[:, :, 1], bind_mask[:, :, 1]
)
ligand_rmsd.extend(rmsd.tolist())
rmsd = compute_rmsd(
out.bind_X[idx1,idx2,idx3,:].view(1,-1,3),
bind_X[idx1,idx2,idx3,:].view(1,-1,3),
bind_mask[idx1,idx2,idx3].view(1,-1),
)
ab_full_rmsd.extend(rmsd.tolist())
return [sum(x) / len(x) for x in [ligand_rmsd, ab_full_rmsd]]
parser = argparse.ArgumentParser()
parser.add_argument('--train_path', default='data/rabd/train_data.jsonl')
parser.add_argument('--val_path', default='data/rabd/val_data.jsonl')
parser.add_argument('--test_path', default='data/rabd/test_data.jsonl')
parser.add_argument('--save_dir', default='ckpts/tmp')
parser.add_argument('--load_model', default=None)
parser.add_argument('--cdr', default='3')
parser.add_argument('--hierarchical', action='store_true', default=False)
parser.add_argument('--hidden_size', type=int, default=256)
parser.add_argument('--batch_tokens', type=int, default=100)
parser.add_argument('--k_neighbors', type=int, default=9)
parser.add_argument('--L_target', type=int, default=20)
parser.add_argument('--depth', type=int, default=4)
parser.add_argument('--rstep', type=int, default=8)
parser.add_argument('--clash_step', type=int, default=10)
parser.add_argument('--vocab_size', type=int, default=21)
parser.add_argument('--num_rbf', type=int, default=16)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--epochs', type=int, default=20)
parser.add_argument('--seed', type=int, default=7)
parser.add_argument('--print_iter', type=int, default=50)
parser.add_argument('--anneal_rate', type=float, default=0.9)
parser.add_argument('--clip_norm', type=float, default=1.0)
args = parser.parse_args()
print(args)
os.makedirs(args.save_dir, exist_ok=True)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
all_data = []
for path in [args.train_path, args.val_path, args.test_path]:
data = AntibodyComplexDataset(
path,
cdr_type=args.cdr,
L_target=args.L_target,
)
all_data.append(data)
loader_train = ComplexLoader(all_data[0], batch_tokens=args.batch_tokens)
loader_val = ComplexLoader(all_data[1], batch_tokens=0)
loader_test = ComplexLoader(all_data[2], batch_tokens=0)
model = RefineDocker(args).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.load_model:
model_ckpt, opt_ckpt, model_args = torch.load(args.load_model)
model = RefineDocker(model_args).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
model.load_state_dict(model_ckpt)
optimizer.load_state_dict(opt_ckpt)
print('Training:{}, Validation:{}, Test:{}'.format(
len(loader_train.dataset), len(loader_val.dataset), len(loader_test.dataset))
)
best_rmsd, best_epoch = 100, -1
for e in range(args.epochs):
model.train()
meter = 0
for i,batch in enumerate(tqdm(loader_train)):
optimizer.zero_grad()
batch = make_batch(batch)
out = model(*batch)
if out.loss.isnan().sum().item() == 0:
out.loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.clip_norm)
optimizer.step()
meter += out.loss.item()
if (i + 1) % args.print_iter == 0:
meter /= args.print_iter
print(f'[{i + 1}] Train Loss = {meter:.3f}')
meter = 0
val_rmsd = evaluate(model, loader_val, args)
ckpt = (model.state_dict(), optimizer.state_dict(), args)
torch.save(ckpt, os.path.join(args.save_dir, f"model.ckpt.{e}"))
print(f'Epoch {e}, Ligand RMSD = {val_rmsd[0]:.3f}, All atom RMSD = {val_rmsd[1]:.3f}')
if val_rmsd[0] < best_rmsd:
best_rmsd = val_rmsd[0]
best_epoch = e
torch.save(ckpt, os.path.join(args.save_dir, f"model.best"))
if best_epoch >= 0:
best_ckpt = os.path.join(args.save_dir, f"model.best")
model.load_state_dict(torch.load(best_ckpt)[0])
test_rmsd = evaluate(model, loader_test, args)
print(f'Test Ligand RMSD = {test_rmsd[0]:.3f}, All atom RMSD = {test_rmsd[1]:.3f}')