Skip to content

Latest commit

 

History

History
109 lines (84 loc) · 3.5 KB

README.md

File metadata and controls

109 lines (84 loc) · 3.5 KB

Multilingual Retrieval Evaluation Framework

This framework provides an end-to-end solution for evaluating retrieval systems using Wikipedia articles as a test corpus. It specializes in Arabic language content but can be adapted for other languages. It is a work in progress and I am only open sourcing a part of it for now with plans for open sourcing the entirety of my experiments and methodology in the future.

Overview

The framework implements the following pipeline:

  1. Data Collection: Fetches Wikipedia articles
  2. Text Processing: Chunks articles into meaningful segments
  3. Query Generation: Creates natural language queries using GPT-4
  4. Embedding Generation: Generates embeddings using Cohere's multilingual model
  5. Index Creation: Builds a vector index for efficient retrieval
  6. Evaluation: Measures retrieval performance using standard IR metrics

Prerequisites

pip install uv
uv venv .venv
uv pip install ir-measures openai cohere python-dotenv usearch pymediawiki numpy

You'll need API keys for:

  • OpenAI (for query generation)
  • Cohere (for embeddings)

Configuration

Create a .env file with your API keys:

OPENAI_API_KEY=your_key_here
COHERE_API_KEY=your_key_here

Usage

The framework is organized into several sequential steps:

1. Data Collection

from mediawiki import MediaWiki
wikipedia = MediaWiki(lang="ar")
results = wikipedia.search("الثورة التونسية")  # Example search term

2. Text Chunking

Uses cluster semantic chunking to break documents into meaningful segments:

from chunking import ClusterSemanticChunker
text_splitter = ClusterSemanticChunker()

3. Query Generation

Generates diverse queries for each document chunk using GPT-4:

client = OpenAI()
# Generate queries using the Query class

4. Embedding Generation

Creates embeddings using Cohere's multilingual model:

co = ClientV2()
# Generate embeddings for documents and queries

5. Indexing

Creates a vector index for efficient retrieval:

chunks_index = Index(ndim=1024, metric='cos')
chunks_index.add(keys, embeddings)

6. Evaluation

Evaluates retrieval performance using standard IR metrics:

ir_measures.calc_aggregate([P@1, P@3, P@5, R@1, R@3, R@5], qrels, results)

Output Files

The framework generates several JSON files during processing:

  • data.json: Raw Wikipedia articles
  • chunks.json: Chunked documents
  • chunks_with_queries.json: Documents with generated queries
  • query_with_ground_truth.json: Query-document relevance pairs
  • chunks_with_queries_and_embeddings.json: Complete document data with embeddings
  • query_with_ground_truth_and_embeddings.json: Complete query data with embeddings
  • chunk_key_mapping.json: Mapping between chunk IDs and index keys
  • qrels.txt: TREC-format relevance judgments

The files aren't uploaded since I don't want to set up LFS.

Evaluation Metrics

The framework evaluates retrieval performance using:

  • Precision@k (k=1,3,5)
  • Recall@k (k=1,3,5)

Customization

To adapt the framework for different languages:

  1. Modify the MediaWiki language parameter
  2. Adjust the prompt for query generation
  3. Use appropriate multilingual embeddings

Contributing

Feel free to submit issues and enhancement requests. If you flag any glaring errors in my methodology please do let me know, I am new to all of this and always eager to learn.