forked from jcastaneyra/ds3231_library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DS3231.cpp
310 lines (255 loc) · 9.35 KB
/
DS3231.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// DS3231 Class is by Seeed Technology Inc(http://www.seeedstudio.com) and used
// in Seeeduino Stalker v2.1 for battery management(MCU power saving mode)
// & to generate timestamp for data logging. DateTime Class is a modified
// version supporting day-of-week.
// Original DateTime Class and its utility code is by Jean-Claude Wippler at JeeLabs
// http://jeelabs.net/projects/cafe/wiki/RTClib
// Released under MIT License http://opensource.org/licenses/mit-license.php
#include <Wire.h>
#include <avr/pgmspace.h>
#include "DS3231.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define SECONDS_PER_DAY 86400L
////////////////////////////////////////////////////////////////////////////////
// utility code, some of this could be exposed in the DateTime API if needed
// const added since the Linux IDE compiler signals an error without it
// Apr.30, 2014 smarkon
static const uint8_t daysInMonth [] PROGMEM = { 31,28,31,30,31,30,31,31,30,31,30,31 };
// number of days since 2000/01/01, valid for 2001..2099
static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) {
if (y >= 2000)
y -= 2000;
uint16_t days = d;
for (uint8_t i = 1; i < m; ++i)
days += pgm_read_byte(daysInMonth + i - 1);
if (m > 2 && y % 4 == 0)
++days;
return days + 365 * y + (y + 3) / 4 - 1;
}
static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) {
return ((days * 24L + h) * 60 + m) * 60 + s;
}
static uint8_t conv2d(const char* p) {
uint8_t v = 0;
if ('0' <= *p && *p <= '9')
v = *p - '0';
return 10 * v + *++p - '0';
}
////////////////////////////////////////////////////////////////////////////////
// DateTime implementation - ignores time zones and DST changes
// NOTE: also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_second
DateTime::DateTime (long t) {
ss = t % 60;
t /= 60;
mm = t % 60;
t /= 60;
hh = t % 24;
uint16_t days = t / 24;
wday = ((days + 4) % 7);
uint8_t leap;
for (yOff = 0; ; ++yOff) {
leap = yOff % 4 == 0;
if (days < 365 + leap)
break;
days -= 365 + leap;
}
for (m = 1; ; ++m) {
uint8_t daysPerMonth = pgm_read_byte(daysInMonth + m - 1);
if (leap && m == 2)
++daysPerMonth;
if (days < daysPerMonth)
break;
days -= daysPerMonth;
}
d = days + 1;
}
DateTime::DateTime (uint16_t year, uint8_t month, uint8_t date, uint8_t hour, uint8_t min, uint8_t sec, uint8_t wd) {
if (year >= 2000)
year -= 2000;
yOff = year;
m = month;
d = date;
hh = hour;
mm = min;
ss = sec;
wday = wd;
}
// A convenient constructor for using "the compiler's time":
// DateTime now (__DATE__, __TIME__);
// NOTE: using PSTR would further reduce the RAM footprint
DateTime::DateTime (const char* date, const char* time) {
// sample input: date = "Dec 26 2009", time = "12:34:56"
yOff = conv2d(date + 9);
// Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
switch (date[0]) {
case 'J': m = date[1] == 'a' ? 1 : m = date[2] == 'n' ? 6 : 7; break;
case 'F': m = 2; break;
case 'A': m = date[2] == 'r' ? 4 : 8; break;
case 'M': m = date[2] == 'r' ? 3 : 5; break;
case 'S': m = 9; break;
case 'O': m = 10; break;
case 'N': m = 11; break;
case 'D': m = 12; break;
}
d = conv2d(date + 4);
hh = conv2d(time);
mm = conv2d(time + 3);
ss = conv2d(time + 6);
}
long DateTime::get() const {
uint16_t days = date2days(yOff, m, d);
return time2long(days, hh, mm, ss);
}
static uint8_t bcd2bin (uint8_t val) { return val - 6 * (val >> 4); }
static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }
////////////////////////////////////////////////////////////////////////////////
// RTC DS3231 implementation
uint8_t DS3231::readRegister(uint8_t regaddress)
{
Wire.beginTransmission(DS3231_ADDRESS);
Wire.write(regaddress);
Wire.endTransmission();
Wire.requestFrom(DS3231_ADDRESS, 1);
return Wire.read();
}
void DS3231::writeRegister(uint8_t regaddress,uint8_t value)
{
Wire.beginTransmission(DS3231_ADDRESS);
Wire.write(regaddress);
Wire.write(value);
Wire.endTransmission();
}
uint8_t DS3231::begin(void) {
unsigned char ctReg=0;
ctReg |= 0b00011100;
writeRegister(DS3231_CONTROL_REG, ctReg); //CONTROL Register Address
delay(10);
// set the clock to 24hr format
uint8_t hrReg = readRegister(DS3231_HOUR_REG);
hrReg &= 0b10111111;
writeRegister(DS3231_HOUR_REG, hrReg);
delay(10);
return 1;
}
//Adjust the time-date specified in DateTime format
//writing any non-existent time-data may interfere with normal operation of the RTC
void DS3231::adjust(const DateTime& dt) {
Wire.beginTransmission(DS3231_ADDRESS);
Wire.write((byte)DS3231_SEC_REG); //beginning from SEC Register address
Wire.write(bin2bcd(dt.second()));
Wire.write(bin2bcd(dt.minute()));
Wire.write(bin2bcd((dt.hour()) & 0b10111111)); //Make sure clock is still 24 Hour
Wire.write(dt.dayOfWeek());
Wire.write(bin2bcd(dt.date()));
Wire.write(bin2bcd(dt.month()));
Wire.write(bin2bcd(dt.year() - 2000));
Wire.endTransmission();
}
//Read the current time-date and return it in DateTime format
DateTime DS3231::now() {
Wire.beginTransmission(DS3231_ADDRESS);
Wire.write((byte)0x00);
Wire.endTransmission();
Wire.requestFrom(DS3231_ADDRESS, 8);
uint8_t ss = bcd2bin(Wire.read());
uint8_t mm = bcd2bin(Wire.read());
uint8_t hrreg = Wire.read();
uint8_t hh = bcd2bin((hrreg & ~0b11000000)); //Ignore 24 Hour bit
uint8_t wd = Wire.read();
uint8_t d = bcd2bin(Wire.read());
uint8_t m = bcd2bin(Wire.read());
uint16_t y = bcd2bin(Wire.read()) + 2000;
return DateTime (y, m, d, hh, mm, ss, wd);
}
//Enable periodic interrupt at /INT pin. Supports only the level interrupt
//for consistency with other /INT interrupts. All interrupts works like single-shot counter
//Use refreshINTA() to re-enable interrupt.
void DS3231::enableInterrupts(uint8_t periodicity)
{
unsigned char ctReg=0;
ctReg |= 0b00011101;
writeRegister(DS3231_CONTROL_REG, ctReg); //CONTROL Register Address
switch(periodicity)
{
case EverySecond:
writeRegister(DS3231_AL1SEC_REG, 0b10000000 ); //set AM1
writeRegister(DS3231_AL1MIN_REG, 0b10000000 ); //set AM2
writeRegister(DS3231_AL1HOUR_REG, 0b10000000 ); //set AM3
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4
break;
case EveryMinute:
writeRegister(DS3231_AL1SEC_REG, 0b00000000 ); //Clr AM1
writeRegister(DS3231_AL1MIN_REG, 0b10000000 ); //set AM2
writeRegister(DS3231_AL1HOUR_REG, 0b10000000 ); //set AM3
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4
break;
case EveryHour:
writeRegister(DS3231_AL1SEC_REG, 0b00000000 ); //Clr AM1
writeRegister(DS3231_AL1MIN_REG, 0b00000000 ); //Clr AM2
writeRegister(DS3231_AL1HOUR_REG, 0b10000000 ); //Set AM3
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4
break;
}
}
//Enable HH/MM/SS interrupt on /INTA pin. All interrupts works like single-shot counter
void DS3231::enableInterrupts(uint8_t hh24, uint8_t mm, uint8_t ss)
{
unsigned char ctReg=0;
ctReg |= 0b00011101;
writeRegister(DS3231_CONTROL_REG, ctReg); //CONTROL Register Address
writeRegister(DS3231_AL1SEC_REG, 0b00000000 | bin2bcd(ss) ); //Clr AM1
writeRegister(DS3231_AL1MIN_REG, 0b00000000 | bin2bcd(mm)); //Clr AM2
writeRegister(DS3231_AL1HOUR_REG, (0b00000000 | (bin2bcd(hh24) & 0b10111111))); //Clr AM3
writeRegister(DS3231_AL1WDAY_REG, 0b10000000 ); //set AM4
}
//Disable Interrupts. This is equivalent to begin() method.
void DS3231::disableInterrupts()
{
begin(); //Restore to initial value.
}
//Clears the interrrupt flag in status register.
//This is equivalent to preparing the DS3231 /INT pin to high for MCU to get ready for recognizing the next INT0 interrupt
void DS3231::clearINTStatus()
{
// Clear interrupt flag
uint8_t statusReg = readRegister(DS3231_STATUS_REG);
statusReg &= 0b11111110;
writeRegister(DS3231_STATUS_REG, statusReg);
}
//force temperature sampling and converting to registers. If this function is not used the temperature is sampled once 64 Sec.
void DS3231::convertTemperature()
{
// Set CONV
uint8_t ctReg = readRegister(DS3231_CONTROL_REG);
ctReg |= 0b00100000;
writeRegister(DS3231_CONTROL_REG,ctReg);
//wait until CONV is cleared. Indicates new temperature value is available in register.
do
{
//do nothing
} while ((readRegister(DS3231_CONTROL_REG) & 0b00100000) == 0b00100000 );
}
//Read the temperature value from the register and convert it into float (deg C)
float DS3231::getTemperature()
{
int temperatureCelsius;
float fTemperatureCelsius;
uint8_t tUBYTE = readRegister(DS3231_TMP_UP_REG); //Two's complement form
uint8_t tLRBYTE = readRegister(DS3231_TMP_LOW_REG); //Fractional part
if(tUBYTE & 0b10000000) //check if -ve number
{
tUBYTE ^= 0b11111111;
tUBYTE += 0x1;
fTemperatureCelsius = tUBYTE + ((tLRBYTE >> 6) * 0.25);
fTemperatureCelsius = fTemperatureCelsius * -1;
}
else
{
fTemperatureCelsius = tUBYTE + ((tLRBYTE >> 6) * 0.25);
}
return (fTemperatureCelsius);
}