-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_src.py
141 lines (124 loc) · 5.39 KB
/
train_src.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import sys
import itertools
import logging
from dataset_mnist import *
from dataset_usps import *
from net_config import *
from optparse import OptionParser
import pdb
# Training settings
parser = OptionParser()
parser.add_option('--config',
type=str,
help="net configuration",
default="usps2mnist.yaml")
(opts, args) = parser.parse_args(sys.argv)
config = NetConfig(opts.config)
kwargs = {'num_workers': 1, 'pin_memory': True} if config.use_cuda else {}
torch.manual_seed(config.seed)
if torch.cuda.is_available() == False:
config.use_cuda = False
print("invalid cuda access")
if config.use_cuda:
torch.cuda.manual_seed(config.seed)
def read(argv,config):
print(config)
if os.path.exists(config.log):
os.remove(config.log)
base_folder_name = os.path.dirname(config.log)
if not os.path.isdir(base_folder_name):
os.mkdir(base_folder_name)
logging.basicConfig(filename=config.log, level=logging.INFO, mode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logging.getLogger('').addHandler(console)
logging.info("Let the journey begin!")
logging.info(config)
exec("train_dataset_a = %s(root=config.train_data_a_path, \
num_training_samples=config.train_data_a_size, \
train=config.train_data_a_use_train_data, \
transform=transforms.ToTensor(), \
seed=config.train_data_a_seed)" % config.train_data_a)
train_loader_a = torch.utils.data.DataLoader(dataset=train_dataset_a, batch_size=config.batch_size, shuffle=True)
exec("train_dataset_b = %s(root=config.train_data_b_path, \
num_training_samples=config.train_data_b_size, \
train=config.train_data_b_use_train_data, \
transform=transforms.ToTensor(), \
seed=config.train_data_b_seed)" % config.train_data_b)
train_loader_b = torch.utils.data.DataLoader(dataset=train_dataset_b, batch_size=config.batch_size, shuffle=True)
exec("test_dataset_b = %s(root=config.test_data_b_path, \
num_training_samples=config.test_data_b_size, \
train=config.test_data_b_use_train_data, \
transform=transforms.ToTensor(), \
seed=config.test_data_b_seed)" % config.test_data_b)
test_loader_b = torch.utils.data.DataLoader(dataset=test_dataset_b, batch_size=config.test_batch_size, shuffle=True)
return train_loader_a, train_loader_b, test_loader_b
pdb.set_trace()
train_loader_a, train_loader_b, test_loader_b = read(sys.argv,config)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x_f = F.relu(self.fc1(x))
x = F.dropout(x_f, training=self.training)
x = self.fc2(x)
return x_f, F.log_softmax(x)
model = Net()
if config.use_cuda:
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader_a):
if config.use_cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
feat, output = model(data)
target = torch.squeeze(target)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % config.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader_a.dataset),
100. * batch_idx / len(train_loader_a), loss.data[0]))
def ttest(epoch):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader_b:
if config.use_cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
feat, output = model(data)
target = torch.squeeze(target)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(test_loader_b) # loss function already averages over batch size
print('\nTest on target valid set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader_b.dataset),
100. * correct / len(test_loader_b.dataset)))
for epoch in range(1, config.epochs + 1):
train(epoch)
ttest(epoch)
PATH = 'pytorch_model_usps2mnist'
torch.save(model.state_dict(), PATH)