-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
186 lines (156 loc) · 7.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import sys
import itertools
import logging
from dataset_mnist import *
from dataset_usps import *
from net_config import *
from optparse import OptionParser
# Training settings
parser = OptionParser()
parser.add_option('--config',
type=str,
help="net configuration",
default="usps2mnist.yaml")
(opts, args) = parser.parse_args(sys.argv)
config = NetConfig(opts.config)
kwargs = {'num_workers': 1, 'pin_memory': True} if config.use_cuda else {}
torch.manual_seed(config.seed)
if torch.cuda.is_available() == False:
config.use_cuda = False
print("invalid cuda access")
if config.use_cuda:
torch.cuda.manual_seed(config.seed)
def read(argv,config):
print(config)
if os.path.exists(config.log):
os.remove(config.log)
base_folder_name = os.path.dirname(config.log)
if not os.path.isdir(base_folder_name):
os.mkdir(base_folder_name)
logging.basicConfig(filename=config.log, level=logging.INFO, mode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logging.getLogger('').addHandler(console)
logging.info("Let the journey begin!")
logging.info(config)
exec("train_dataset_a = %s(root=config.train_data_a_path, \
num_training_samples=config.train_data_a_size, \
train=config.train_data_a_use_train_data, \
transform=transforms.ToTensor(), \
seed=config.train_data_a_seed)" % config.train_data_a)
train_loader_a = torch.utils.data.DataLoader(dataset=train_dataset_a, batch_size=config.batch_size, shuffle=True)
exec("train_dataset_b = %s(root=config.train_data_b_path, \
num_training_samples=config.train_data_b_size, \
train=config.train_data_b_use_train_data, \
transform=transforms.ToTensor(), \
seed=config.train_data_b_seed)" % config.train_data_b)
train_loader_b = torch.utils.data.DataLoader(dataset=train_dataset_b, batch_size=config.batch_size, shuffle=True)
exec("test_dataset_b = %s(root=config.test_data_b_path, \
num_training_samples=config.test_data_b_size, \
train=config.test_data_b_use_train_data, \
transform=transforms.ToTensor(), \
seed=config.test_data_b_seed)" % config.test_data_b)
test_loader_b = torch.utils.data.DataLoader(dataset=test_dataset_b, batch_size=config.test_batch_size, shuffle=True)
return train_loader_a, train_loader_b, test_loader_b,
train_loader_a, train_loader_b, test_loader_b = read(sys.argv,config)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x_f = self.fc1(x.view(-1, 320))
x = F.dropout(F.relu(x_f), training=self.training)
x = self.fc2(x)
return x_f, F.log_softmax(x)
class Discrimer(nn.Module):
def __init__(self):
super(Discrimer, self).__init__()
self.fc1 = nn.Linear(50, 512)
self.fc2 = nn.Linear(512, 2)
def forward(self, x):
x.register_hook(lambda grad: grad * 0.5) # double the gradient
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x)
model = Net()
model_src = Net()
critic = Discrimer()
if config.use_cuda:
model.cuda()
model_src.cuda()
critic.cuda()
optimizer_d = optim.Adam(critic.parameters(), lr=config.lr)
optimizer_g = optim.Adam(model.parameters(), lr=config.lr)
print("load model...")
PATH = config.pretrained_path #'pytorch_model_usps2mnist'
model.load_state_dict(torch.load(PATH)) #model for adapt
model_src.load_state_dict(torch.load(PATH))
def train(epoch):
model.train()
for batch_idx, ((data_src, target_src), (data, target)) in enumerate(itertools.izip(train_loader_a, train_loader_b)):
if config.use_cuda:
data_src, target_src = data_src.cuda(), target_src.cuda()
data, target = data.cuda(), target.cuda()
data_src, target_src = Variable(data_src), Variable(target_src)
data, target = Variable(data), Variable(target)
feat_src, output_src = model_src(data_src)
feat, output = model(data)
all_d_feat = torch.cat((feat_src,feat),0)
all_d_score = critic(all_d_feat)
all_d_label = torch.cat((Variable(torch.ones(all_d_score.size()[0]/2).long().cuda()),
Variable(torch.zeros(all_d_score.size()[0]/2).long().cuda())),0)
#D loss
domain_loss = F.nll_loss(all_d_score, all_d_label)
###domain accuracy###
predict = torch.squeeze(all_d_score.max(1)[1])
d_accu = (predict == all_d_label).float().mean()
critic.zero_grad()
model.zero_grad()
domain_loss.backward(retain_variables=True)
optimizer_d.step()
#G loss
gen_loss = F.nll_loss(all_d_score[all_d_score.size()[0]/2:,...],
Variable(torch.ones(all_d_score.size()[0]/2).long().cuda()))
model.zero_grad()
critic.zero_grad()
gen_loss.backward()
optimizer_g.step()
if batch_idx % config.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tG Loss: {:.6f}\tD Loss: {:.6f}\tD accu: {:.3f}'.format(
epoch, batch_idx * len(data), len(train_loader_a.dataset),
100. * batch_idx / len(train_loader_a), gen_loss.data[0],domain_loss.data[0],d_accu.data[0]))
def ttest(epoch):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader_b:
if config.use_cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
feat, output = model(data)
target = torch.squeeze(target)
test_loss += F.nll_loss(output, target).data[0]
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(test_loader_b) # loss function already averages over batch size
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader_b.dataset),
100. * correct / len(test_loader_b.dataset)))
for epoch in range(1, config.epochs + 1):
train(epoch)
ttest(epoch)