-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model_ddp.py
145 lines (117 loc) · 5.51 KB
/
train_model_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pandas as pd
import torch, os
from sklearn.model_selection import train_test_split
from src.models.SSD300.model import SSD300
from src.models.FasterRCNN.FasterRCNN import FasterRCNNVGG16
from src.dataset import DetectionDataset
from src.loss import MultiBoxLoss
from src.train_ddp import train
import argparse
# argument parser
def parsing():
parser = argparse.ArgumentParser(description="Training the Moleculer Object Detection model through distributed data parallel")
# random seed
parser.add_argument("--random_seed", type = int, default = 42)
# tag and result directory
parser.add_argument("--tag", type = str, default = "ddp_focal")
parser.add_argument("--model", type = str, default = "SSD", choices = ["SSD", "FasterRCNN", "RCNN"])
parser.add_argument("--save_dir", type = str, default = "./results")
# batch size / sequence length / epochs / distance / num workers / pin memory use
parser.add_argument("--batch_size", type = int, default = 32)
parser.add_argument("--num_epoch", type = int, default = 256)
parser.add_argument("--verbose", type = int, default = 4)
parser.add_argument("--num_workers", type = int, default = 4)
parser.add_argument("--pin_memory", type = bool, default = True)
parser.add_argument("--train_test_ratio", type = float, default = 0.2)
parser.add_argument("--continue_training", type = bool, default = False)
# optimizer : SGD, RMSProps, Adam, AdamW
parser.add_argument("--optimizer", type = str, default = "AdamW", choices=["SGD", "RMSProps", "Adam", "AdamW"])
# Loss function setup
parser.add_argument("--threshold", type = float, default = 0.5)
parser.add_argument("--neg_pos_ratio", type = float, default = 3.0)
parser.add_argument("--alpha", type = float, default = 1.0)
parser.add_argument("--use_focal_loss", type = bool, default = True)
# detection setup
parser.add_argument("--min_score", type = float, default = 0.5)
parser.add_argument("--max_overlap", type = float, default = 0.5)
parser.add_argument("--top_k", type = int, default = 12)
# learning rate, step size and decay constant
parser.add_argument("--lr", type = float, default = 1e-3)
parser.add_argument("--max_norm_grad", type = float, default = 1.0)
args = vars(parser.parse_args())
return args
# torch cuda initialize and clear cache
torch.cuda.init()
torch.cuda.empty_cache()
if __name__ == "__main__":
# initialize process group
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"
# torch device state
print("=============== device setup ===============")
print("torch device avaliable : ", torch.cuda.is_available())
print("torch current device : ", torch.cuda.current_device())
print("torch device num : ", torch.cuda.device_count())
# parsing
args = parsing()
tag = "{}".format(args['model'])
if len(args['tag'])>0:
tag = "{}_{}".format(tag, args['tag'])
save_best_dir = "./weights/{}_best.pt".format(tag)
save_last_dir = "./weights/{}_last.pt".format(tag)
exp_dir = os.path.join("./runs/", "tensorboard_{}".format(tag))
# directory check
if not os.path.exists("./runs"):
os.mkdir("./runs")
if not os.path.exists("./results"):
os.mkdir("./results")
if not os.path.exists("./weights"):
os.mkdir("./weights")
# load data
df = pd.read_csv("./dataset/detection_data.csv")
df_train, df_test = train_test_split(df, test_size = args['train_test_ratio'], shuffle = True, random_state = 42)
df_train, df_valid = train_test_split(df_train, test_size = args['train_test_ratio'], shuffle = True, random_state = 42)
train_dataset = DetectionDataset(df_train, split = 'TRAIN')
valid_dataset = DetectionDataset(df_valid, split = 'TEST')
test_dataset = DetectionDataset(df_test, split = 'TEST')
print("=============== Dataset info ===============")
print("train data : {}".format(train_dataset.__len__()))
print("valid data : {}".format(valid_dataset.__len__()))
print("test data : {}".format(test_dataset.__len__()))
if args['model'] == 'SSD':
model = SSD300(5)
elif args['model'] == 'FasterRCNN':
model = FasterRCNNVGG16(n_fg_class=5)
loss_fn = MultiBoxLoss(
model.priors_cxcy,
threshold = args['threshold'],
neg_pos_ratio = args['neg_pos_ratio'],
alpha = args['alpha'],
use_focal_loss = args['use_focal_loss']
)
model.summary()
if args['continue_training'] and os.path.exists(save_best_dir):
print("Load previous best parameters for continuing training process")
model.load_state_dict(torch.load(save_best_dir, map_location = "cpu"))
print("=============== Training process ===============")
train(
batch_size = args['batch_size'],
model = model,
train_dataset = train_dataset,
valid_dataset = valid_dataset,
test_dataset = test_dataset,
random_seed = args['random_seed'],
resume = False,
learning_rate = args['lr'],
loss_fn = loss_fn,
max_norm_grad = args['max_norm_grad'],
model_filepath = save_last_dir,
num_epoch = args['num_epoch'],
verbose = args['verbose'],
save_best = save_best_dir,
tensorboard_dir = exp_dir,
min_score = args['min_score'],
max_overlap = args['max_overlap'],
top_k = args['top_k'],
optimizer_type = args['optimizer']
)