-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference_refining.py
229 lines (205 loc) · 11.8 KB
/
inference_refining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import json
import logging
import re
import torch
import os
from tqdm import tqdm
import torch.nn.functional as F
from config import args
from src.model.llama2_predict import predict, model_init
from src.format.get_cot_prompt import get_cot_prompt
from src.format.get_step_exact_tokens import get_step_exact_tokens
from utils import load_data, print_exp, setup_log, is_effectively_empty, find_subsequence_position, step_exacts_2_list, \
parse_response_to_dict, find_token_indices, is_word_in_sentence, match_final_answer_token_ids
def llama_inference_refining():
output_dir = os.path.dirname(args.output_path)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
log = setup_log(args)
if args.dataset in ["hotpotQA", "2WikimhQA"]:
question, answer, ids, types = load_data(args)
else:
question, answer, ids = load_data(args)
model, tokenizer, device = model_init(args)
model.eval()
for idx, q in enumerate(tqdm(question[], total=len(question[]))):
with open(f"{args.output_path}/output_v1.json", "a", encoding="utf-8") as f:
if args.dataset in ["gsm8k", "svamp", "ASDiv"]:
a = answer[idx]
id = ids[idx]
else:
a = answer[idx]
id = ids[idx]
t = types[idx]
log.debug(f"##### This is the --{idx + 1}th-- Question #####")
cot_prompt = get_cot_prompt(args, q)
inputs = tokenizer(cot_prompt, return_tensors="pt")
inputs = {key: value.to(model.device) for key, value in inputs.items()}
try_time = 0
while try_time < args.try_times:
outputs = model.generate(
**inputs,
max_new_tokens = args.max_length_cot,
temperature=args.temperature,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True,
output_scores=True,
)
generated_ids = outputs.sequences[0][len(inputs["input_ids"][0]):-1]
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
llm_answer, steps_dict, response = parse_response_to_dict(response)
if generated_ids.size(0) >= args.max_length_cot:
log.debug(f'New Reasoning Tokens Are Too Much, Current try is {try_time + 1}')
try_time += 1
elif generated_ids.size(0) == 0:
log.debug(f'New Reasoning Tokens Are Null, Current try is {try_time + 1}')
try_time += 1
elif llm_answer is None or llm_answer in ['', ' ']:
log.debug(f'New Reasoning Tokens Are None, Current try is {try_time + 1}')
try_time += 1
else:
response_tokens = tokenizer.tokenize(response)
response_token_ids = tokenizer.convert_tokens_to_ids(response_tokens)
original_tokens = tokenizer.convert_ids_to_tokens(generated_ids)
probabilities = [{i: p for i, p in enumerate(prob[0]) if p > 0} for prob in [torch.softmax(score, dim=1).tolist() for score in outputs.scores]]
final_answer_probabilities = {}
final_answer_token_ids = {}
answer_start_indice, answer_token_ids = match_final_answer_token_ids(args, original_tokens, response_tokens, generated_ids)
if answer_start_indice == None:
log.debug(f'Cannot locate the Final Answer, Current try is {try_time + 1}')
try_time += 1
continue
answer_probs = []
flag = False
for j, token_id in enumerate(answer_token_ids):
idxx = j + answer_start_indice
if token_id not in probabilities[idxx].keys():
flag = True
break
answer_probs.append(probabilities[idxx][token_id])
if flag:
log.debug(f'Cannot locate the Final Answer Token Probability, Current try is {try_time + 1}')
try_time += 1
continue
final_answer_probabilities[llm_answer] = answer_probs
final_answer_token_ids[llm_answer] = answer_token_ids.tolist()
exacts_prompt = get_step_exact_tokens(args, q, response)
exact_response = predict(args, exacts_prompt, model, tokenizer)
if "NO ANSWER" in exact_response:
log.debug(f'Exact Tokens Have NO ANSWER, Current try is {try_time + 1}')
try_time += 1
continue
if not step_exacts_2_list(exact_response):
log.debug(f'Exact Tokens Have no contribution scores, Current try is {try_time + 1}')
try_time += 1
continue
exact_response, keywords_list, contributions_list = step_exacts_2_list(exact_response)
if len(keywords_list) == 0:
log.debug(f'Cannot Exract Effective Keywords, Current try is {try_time + 1}')
try_time += 1
continue
if len(steps_dict) > len(keywords_list):
log.debug(f'Len of keywords list doesn\'t match the len of step dict, Current try is {try_time + 1}')
try_time += 1
continue
keywords_probabilities = {}
keywords_contributions = {}
keywords_token_ids = {}
for step_idx, (step_name, step_text) in enumerate(steps_dict.items()):
# # Skip the Final Answer
keywords = keywords_list[step_idx]
contributions = contributions_list[step_idx]
if len(keywords) == 1 and keywords[0] == 'NO ANSWER':
continue
step_tokens = tokenizer.tokenize(step_text)
processed_step_tokens = [token[1:] if token.startswith('Ġ') or token.startswith('▁') else token for token in step_tokens]
step_token_ids = tokenizer.convert_tokens_to_ids(step_tokens)
start_position = find_subsequence_position(step_token_ids[1:-2], generated_ids) - 1
step_token_ids = generated_ids[start_position: start_position + len(step_tokens)]
keywords_probabilities_dict = {}
keywords_contributions_dict = {}
keywords_token_ids_dict = {}
for keyword_idx, keyword in enumerate(keywords):
keyword_probs = []
keyword_token_ids = []
if is_word_in_sentence(step_text, keyword) is not True:
log.debug(f"\n{step_name}-Keyword-{keyword_idx} Does not appear in the Step Text")
continue
keyword_token_start_idx, keyword_token_end_idx = find_token_indices(processed_step_tokens, keyword)
keyword_token_ids = generated_ids[start_position + keyword_token_start_idx: start_position + keyword_token_end_idx + 1]
keyword_token_ids = keyword_token_ids.data.cpu().numpy()
for j, token_id in enumerate(keyword_token_ids):
idxx = start_position + keyword_token_start_idx + j
keyword_probs.append(probabilities[idxx][token_id])
keywords_probabilities_dict[keyword] = keyword_probs
keywords_contributions_dict[keyword] = int(contributions[keyword_idx])
keywords_token_ids_dict[keyword] = keyword_token_ids.tolist()
keywords_probabilities[step_name] = keywords_probabilities_dict
keywords_contributions[step_name] = keywords_contributions_dict
keywords_token_ids[step_name] = keywords_token_ids_dict
if is_effectively_empty(keywords_probabilities):
log.debug(f'Token Probability from All Steps are All None, Current try is {try_time + 1}')
try_time += 1
continue
if args.dataset in ["gsm8k", "svamp", "ASDiv"]:
formatted_data = {
"id": id,
"question": q,
"correct answer": a,
"llm response": response,
"llm answer": llm_answer,
"llm answer token probability": final_answer_probabilities,
"step-wise keywords": exact_response,
"keyword token probability": keywords_probabilities,
"keyword contribution": keywords_contributions,
"keyword token ids": keywords_token_ids,
"final answer token ids": final_answer_token_ids,
}
else:
formatted_data = {
"id": id,
"question": q,
"correct answer": a,
"type": t,
"llm response": response,
"llm answer": llm_answer,
"llm answer token probability": final_answer_probabilities,
"step-wise keywords": exact_response,
"keyword token probability": keywords_probabilities,
"keyword contribution": keywords_contributions,
"keyword token ids": keywords_token_ids,
"final answer token ids": final_answer_token_ids,
}
f.write(json.dumps(formatted_data, ensure_ascii=False) + "\n")
break
if try_time >= args.try_times:
log.debug(f'#####The Following Question:#####\n{q}\nHas no Meaningful Answer & Explanations, Record and Skip')
error_dir = f"{args.output_path}/error_questions"
if not os.path.exists(error_dir):
os.makedirs(error_dir)
with open(f"{args.output_path}/error_questions/output_v1.json", "a", encoding="utf-8") as f:
if args.dataset in ["gsm8k", "svamp", "ASDiv"]:
formatted_data = {
"id": id,
"question": q,
"correct answer": a,
"llm response": response,
"llm answer": llm_answer
}
# hotpotQA 2WikiMHQA
else:
formatted_data = {
"id": id,
"question": q,
"correct answer": a,
"type": t,
"llm response": response,
"llm answer": llm_answer
}
f.write(json.dumps(formatted_data, ensure_ascii=False) + "\n")
if __name__ == '__main__':
print_exp(args)
if args.model_engine in ["llama3-1_8B", "llama2-13b"]:
llama_inference_refining()
else:
raise ValueError(f"Invalid model engine: {args.model_engine}")